Exercise


May 01'23

Answer

Solution: C

[[math]] \begin{align*} \operatorname{E}[X] = \int_{1}^{\infty} x \frac{p-1}{x^p} dx &= (p-1) \int_{1}^{\infty} x^{1-p} dx \\ &= (p-1) \frac{x^{2-p}}{2-p} \Big |_1^{\infty} \\ &= \frac{p-1}{p-2} = 2. \end{align*} [[/math]]

Hence [math]p = 3[/math].

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00