Exercise


May 13'23

Answer

Key: A

The likelihood function is

[[math]] L(\alpha ) = (e^{-\lambda})^{80}(1-e^{-\lambda})^{105} [[/math]]

The loglikelihood function is

[[math]] l (\alpha ) = −80\lambda + 105 \ln(1 − e^{-\lambda} ) [[/math]]

Setting [math] l^{'}(\alpha ) = -80 + \frac{105e^{-\lambda}}{1-e^{-\lambda}} [/math] equal to 0, we find:

[[math]]\hat{\lambda} = -\ln \frac{80}{185} = 0.838329[[/math]]

The probability the number of claims, [math]N[/math], is less than 2 is

[[math]] P(N \lt 2) = e^{-\hat{\lambda}} + \hat{\lambda}e^{-\hat{\lambda}} = 0.79495 [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00