Exercise
May 04'23
Answer
Solution: E
We are given that R is uniform on the interval ( 0.04, 0.08 ) and [math]V = 10, 000e^R[/math] Therefore, the distribution function of [math]V[/math] is given by
[[math]]
\begin{align*}
F(v) = \operatorname{P}[V \leq v ] &= \operatorname{P}[10000 e^R \leq v ] \\ &= \operatorname{P}[R \leq \ln(v) - \ln(10000) ] \\
&= \frac{1}{0.04} \int_{0.04}^{\ln(v)-\ln(10000)} dr \\ &= \frac{1}{0.04}r \Big |_{0.04}^{\ln(v)-\ln(10000)}\\
&= 25\ln(v) - 25\ln(10000) - 1 \\
&= 25 \left [ \ln(\frac{v}{10000}) - 0.04\right ].
\end{align*}
[[/math]]