Exercise
Nov 20'23
Answer
Solution: A
Let [math]h(i)[/math] be the present value of the cash flows. For Redington immunization, the value of the function and its first derivative at [math]25 \%[/math] must be zero and the second derivative must be positive. [math]\mathrm{X}[/math] is immunized because:
[[math]]
\begin{aligned}
& h(0.25)=102,400-192,000 / 1.25+100,000 / 1.25^3=0 \\
& h^{\prime}(0.25)=192,000 / 1.25^2-100,000(3) / 1.25^4=0 \\
& h^{\prime \prime}(0.25)=-192,000(2) / 1.25^3+100,000(3)(4) / 1.25^5=196,608\gt0
\end{aligned}
[[/math]]
[math]\mathrm{Y}[/math] is not immunized because:
[[math]]
\begin{aligned}
& h(0.25)=158,400-342,000 / 1.25+100,000 / 1.25^2+100,000 / 1.25^3=0 \\
& h^{\prime}(0.25)=342,000 / 1.25^2-100,000(2) / 1.25^3-100,000(3) / 1.25^4=-6,400 \neq 0
\end{aligned}
[[/math]]
[math]\mathrm{Z}[/math] is not immunized because
[[math]]
h(0.25)=-89,600+288,000 / 1.25+100,000 / 1.25^2-300,000 / 1.25^3=51,200 \neq 0
[[/math]]