Revision as of 19:57, 4 May 2023 by Admin (Created page with "'''Solution: E''' First note R = 10/T . Then <math display = "block"> F_R(r) = \operatorname{P}[R ≤ r] = \operatorname{P}[\frac{10}{T} \leq r ] = \operatorname{P}[T \geq \...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 04'23

Answer

Solution: E

First note R = 10/T . Then

[[math]] F_R(r) = \operatorname{P}[R ≤ r] = \operatorname{P}[\frac{10}{T} \leq r ] = \operatorname{P}[T \geq \frac{10}{r}] = 1 - F_T(\frac{10}{r}). [[/math]]

Differentiating with respect to

[[math]] \begin{align*} r f_R(r) = F^{'}_R(r) = d/dr (1 - F_T(\frac{10}{r})) = -(\frac{d}{dt}F_T(t)) (\frac{-10}{r^2}) \\ \frac{d}{dt}F_T(t) = f_T(t) = \frac{1}{4} \end{align*} [[/math]]

since [math]T[/math] is uniformly distributed on [8,12]. Therefore

[[math]] f_R(r) = \frac{-1}{4} (\frac{-10}{r^2}) = \frac{5}{2r^2}. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00