Exercise
Let [math]T[/math] denote the time in minutes for a customer service representative to respond to 10 telephone inquiries. [math]T[/math] is uniformly distributed on the interval with endpoints 8 minutes and 12 minutes. Let [math]R[/math] denote the average rate, in customers per minute, at which the representative responds to inquiries, and let [math]f(r)[/math] be the density function for [math]R[/math].
Determine [math]f(r)[/math], for [math]\frac{10}{12} \lt r \lt \frac{10}{8}[/math].
- 12/5
- 3-5/2r
- [math]3r-5\ln(r)/2[/math]
- [math]\frac{10}{r^2}[/math]
- [math]\frac{5}{2r^2}[/math]
The random variable [math]T[/math] represents the time in minutes for a customer service representative to respond to 10 telephone inquiries. [math]T[/math] is uniformly distributed on the interval [8, 12] minutes. Its probability density function (PDF) is:
- When [math]T = 8[/math] (the minimum time), [math]R = \frac{10}{8}[/math] (the maximum rate).
- When [math]T = 12[/math] (the maximum time), [math]R = \frac{10}{12}[/math] (the minimum rate).
Thus, for [math]T \in [8, 12][/math], the rate [math]R[/math] is in the interval [math]\left[\frac{10}{12}, \frac{10}{8}\right][/math].
To find the probability density function (PDF) [math]f_R(r)[/math], we first derive the cumulative distribution function (CDF) [math]F_R(r)[/math]. By definition, [math]F_R(r) = P[R \le r][/math]. Substituting the relationship [math]R = \frac{10}{T}[/math]:
The PDF [math]f_R(r)[/math] is found by differentiating [math]F_R(r)[/math] with respect to [math]r[/math]:
- The CDF method is a reliable technique for finding the probability density function (PDF) of a transformed random variable [math]R = g(T)[/math]. It involves finding [math]F_R(r) = P[R \le r][/math] and then differentiating [math]F_R(r)[/math] to get [math]f_R(r)[/math].
- When dealing with inverse transformations like [math]R = \frac{10}{T}[/math], it's crucial to correctly manipulate inequalities. For positive [math]T[/math] and [math]r[/math], [math]\frac{10}{T} \le r[/math] implies [math]T \ge \frac{10}{r}[/math].
- The chain rule is essential for differentiating the CDF of the transformed variable: if [math]F_R(r) = 1 - F_T(h(r))[/math], then [math]f_R(r) = -f_T(h(r)) \cdot h'(r)[/math].
- Always establish the correct domain for the transformed random variable [math]R[/math] based on the domain of the original variable [math]T[/math] to fully define the PDF.
- Recall that for a uniform distribution on [math][a, b][/math], its PDF is a constant [math]\frac{1}{b-a}[/math] within the interval.
Solution: E
First note R = 10/T . Then
Differentiating with respect to
since [math]T[/math] is uniformly distributed on [8,12]. Therefore