Revision as of 15:56, 1 May 2023 by Admin (Created page with "'''Solution: C''' <math display = "block"> \begin{align*} \operatorname{E}[X] = \int_{1}^{\infty} x \frac{p-1}{x^p} dx &= (p-1) \int_{1}^{\infty} x^{1-p} dx \\ &= (p-1) \frac...")
Exercise
May 01'23
Answer
Solution: C
[[math]]
\begin{align*}
\operatorname{E}[X] = \int_{1}^{\infty} x \frac{p-1}{x^p} dx &= (p-1) \int_{1}^{\infty} x^{1-p} dx \\
&= (p-1) \frac{x^{2-p}}{2-p} \Big |_1^{\infty} \\ &= \frac{p-1}{p-2} = 2.
\end{align*}
[[/math]]
Hence [math]p = 3[/math].