Revision as of 18:14, 4 May 2023 by Admin (Created page with "'''Solution: E''' We are given that R is uniform on the interval ( 0.04, 0.08 ) and <math>V = 10, 000e^R</math> Therefore, the distribution function of <math>V</math> is give...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 04'23

Answer

Solution: E

We are given that R is uniform on the interval ( 0.04, 0.08 ) and [math]V = 10, 000e^R[/math] Therefore, the distribution function of [math]V[/math] is given by

[[math]] \begin{align*} F(v) = \operatorname{P}[V \leq v ] &= \operatorname{P}[10000 e^R \leq v ] = \operatorname{P}[R \leq ln(v) - \ln(10000) ] \\ &= \frac{1}{0.04} \int_{0.04}^{\ln(v)-\ln(10000)} dr \\ &= \frac{1}{0.04}r \Big |_{0.04}^{\ln(v)-\ln(10000)} = 25\ln(v) - 25\ln(10000) - 1 \\ &= 25 \left [ \ln(\frac{v}{10000}) - 0.04\right ]. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00