excans:13d8516dc1: Difference between revisions

From Stochiki
mNo edit summary
mNo edit summary
 
Line 4: Line 4:
\begin{align*}
\begin{align*}
F(x) &= \int_0^{x}2e^{-2y} dy = -e^{-2y} \Big |_0^x = 1-e^{-2x} \\
F(x) &= \int_0^{x}2e^{-2y} dy = -e^{-2y} \Big |_0^x = 1-e^{-2x} \\
P[X \leq 0.5 | X \leq 1.0] &= \frac{P[X \leq 0.5]}{P[X \leq 1.0]} = \frac{F(0.5)}{F(1.0)} = \frac{1-e^{-1}}{1-e^{-2}} = 0.731.  
\operatorname{P}[X \leq 0.5 | X \leq 1.0] &= \frac{\operatorname{P}[X \leq 0.5]}{\operatorname{P}[X \leq 1.0]} = \frac{F(0.5)}{F(1.0)} = \frac{1-e^{-1}}{1-e^{-2}} = 0.731.  
\end{align*}
\end{align*}
</math>
</math>


{{soacopyright | 2023}}
{{soacopyright | 2023}}

Latest revision as of 21:54, 8 May 2023

Solution: D

[[math]] \begin{align*} F(x) &= \int_0^{x}2e^{-2y} dy = -e^{-2y} \Big |_0^x = 1-e^{-2x} \\ \operatorname{P}[X \leq 0.5 | X \leq 1.0] &= \frac{\operatorname{P}[X \leq 0.5]}{\operatorname{P}[X \leq 1.0]} = \frac{F(0.5)}{F(1.0)} = \frac{1-e^{-1}}{1-e^{-2}} = 0.731. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.