Exercise
Let [math]X[/math] be a random variable with density function
Calculate [math]\operatorname{P}[ X \leq 0.5 | X \leq 1.0].[/math]
- 0.433
- 0.547
- 0.632
- 0.731
- 0.865
The problem asks us to calculate the conditional probability [math]\operatorname{P}[ X \leq 0.5 | X \leq 1.0][/math] for a random variable [math]X[/math] with a given density function. The density function is:
- [math]A = \{X \leq 0.5\}[/math]
- [math]B = \{X \leq 1.0\}[/math]
Determine the Intersection of Events: Since [math]0.5 \leq 1.0[/math], the event [math]A \cap B[/math] (where [math]X \leq 0.5[/math] AND [math]X \leq 1.0[/math]) simplifies to [math]X \leq 0.5[/math]. Therefore, [math]A \cap B = \{X \leq 0.5\}[/math]. Rewrite the Conditional Probability: Substituting this into the conditional probability formula, we get:
The CDF, [math]F(x)[/math], is the integral of the probability density function (PDF), [math]f(x)[/math], from [math]-\infty[/math] to [math]x[/math]. For [math]x \gt 0[/math], given that [math]f(x) = 2e^{-2x}[/math] for [math]x \gt 0[/math] and [math]0[/math] otherwise, we calculate [math]F(x)[/math] as follows:
Now we need to evaluate [math]F(x)[/math] at [math]x = 0.5[/math] and [math]x = 1.0[/math]. Calculate [math]F(0.5)[/math]: Substitute [math]x = 0.5[/math] into the CDF formula:
Now we can substitute the evaluated CDF values back into the conditional probability expression derived in Step 1:
- [math]e^{-1} \approx 0.367879[/math]
- [math]e^{-2} \approx 0.135335[/math]
Substitute these values:
- The calculation of conditional probabilities for continuous random variables relies on understanding the intersection of events and the Cumulative Distribution Function (CDF).
- When dealing with [math]\operatorname{P}[X \leq a | X \leq b][/math] where [math]a \leq b[/math], the intersection simplifies to [math]X \leq a[/math], allowing the formula to be expressed as [math]\frac{F(a)}{F(b)}[/math].
- The CDF is found by integrating the PDF. For an exponential distribution starting at 0, the CDF is typically of the form [math]1 - e^{-\lambda x}[/math].
- Accurate calculation of the definite integral is crucial for obtaining the correct CDF.
- The problem implicitly uses properties of the exponential distribution, a common distribution in probability and statistics.
Solution: D