8b. Master matrices

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Let us discuss now some defect computations for an interesting class of Hadamard matrices, namely the “master” ones, introduced by Avan et al. in [1]:

Definition

A master Hadamard matrix is an Hadamard matrix of the form

[[math]] H_{ij}=\lambda_i^{n_j} [[/math]]
with [math]\lambda_i\in\mathbb T,n_j\in\mathbb R[/math]. The associated “master function” is [math]f(z)=\sum_jz^{n_j}[/math].

Observe that with [math]\lambda_i=e^{im_i}[/math] we have [math]H_{ij}=e^{im_in_j}[/math]. The basic example of such a matrix is the Fourier matrix [math]F_N[/math], having master function as follows:

[[math]] f(z)=\frac{z^N-1}{z-1} [[/math]]


Observe that, in terms of [math]f[/math], the Hadamard condition on [math]H[/math] is simply:

[[math]] f\left(\frac{\lambda_i}{\lambda_j}\right)=N\delta_{ij} [[/math]]


These matrices were introduced in [1], the motivating remark there being the fact that the following operator defines a representation of the Temperley-Lieb algebra [2]:

[[math]] R=\sum_{ij}e_{ij}\otimes\Lambda^{n_i-n_j} [[/math]]


At the level of examples, the first observation, from [1], is that the standard [math]4\times 4[/math] complex Hadamard matrices are, with 2 exceptions, master Hadamard matrices:

Proposition

The following complex Hadamard matrix, with [math]|q|=1[/math],

[[math]] F_{2,2}^q=\begin{pmatrix} 1&1&1&1\\ 1&-1&1&-1\\ 1&q&-1&-q\\ 1&-q&-1&q \end{pmatrix} [[/math]]
is a master Hadamard matrix, for any [math]q\neq\pm1[/math].


Show Proof

We use the exponentiation convention [math](e^{it})^r=e^{itr}[/math], for [math]t\in[0,2\pi)[/math] and [math]r\in\mathbb R[/math]. Since we have [math]q^2\neq1[/math], we can find [math]k\in\mathbb R[/math] such that:

[[math]] q^{2k}=-1 [[/math]]


In terms of this parameter [math]k\in\mathbb R[/math], our matrix becomes:

[[math]] F_{2,2}^q=\begin{pmatrix} 1^0&1^1&1^{2k}&1^{2k+1}\\ (-1)^0&(-1)^1&(-1)^{2k}&(-1)^{2k+1}\\ q^0&q^1&q^{2k}&q^{2k+1}\\ (-q)^0&(-q)^1&(-q)^{2k}&(-q)^{2k+1}\\ \end{pmatrix} [[/math]]


Now let us pick [math]\lambda\neq1[/math] and write, by using our exponentiation convention above:

[[math]] 1=\lambda^x\quad,\quad -1=\lambda^y [[/math]]

[[math]] q=\lambda^z\quad,\quad -q=\lambda^t [[/math]]


But this gives the formula in the statement.

Observe that the above result shows that any Hamadard matrix at [math]N\leq5[/math] is master Hadamard. We have the following generalization of it, once again from [1]:

Theorem

The deformed Fourier matrices [math]F_M\otimes_QF_N[/math] are master Hadamard, for any parameter matrix [math]Q\in M_{M\times N}(\mathbb T)[/math] of the form

[[math]] Q_{ib}=q^{i(Np_b+b)} [[/math]]
where [math]q=e^{2\pi i/MNk}[/math] with [math]k\in\mathbb N[/math], and [math]p_0,\ldots,p_{N-1}\in\mathbb R[/math].


Show Proof

The main construction in [1], in connection with deformations, that we will follow here, is in terms of master functions as follows:

[[math]] f(z)=f_M(z^{Nk})f_N(z) [[/math]]


Here [math]k\in\mathbb N[/math], and the functions on the right are by definition as follows:

[[math]] f_M(z)=\sum_iz^{Mr_i+i}\quad,\quad f_N(z)=\sum_az^{Np_a+a} [[/math]]


We use the eigenvalues [math]\lambda_{ia}=q^iw^a[/math], where [math]w=e^{2\pi i/N}[/math], and where [math]q^{Nk}=\nu[/math], where [math]\nu^M=1[/math]. We have [math]f(z)=f_M(z^{Nk})f_N(z)[/math], so the exponents are:

[[math]] n_{jb}=Nk(Mr_j+j)+Np_b+b [[/math]]


Thus the associated master Hadamard matrix is given by:

[[math]] \begin{eqnarray*} H_{ia,jb} &=&(q^iw^a)^{Nk(Mr_j+j)+Np_b+b}\\ &=&\nu^{ij}q^{i(Np_b+b)}w^{a(Np_b+b)}\\ &=&\nu^{ij}w^{ab}q^{i(Np_b+b)} \end{eqnarray*} [[/math]]


Now let us recall that we have the following formula, for the tensor product:

[[math]] (F_M\otimes F_N)_{ia,jb}=\nu^{ij}w^{ab} [[/math]]


Thus we have as claimed [math]H=F_M\otimes_QF_N[/math], with [math]Q[/math] being as follows:

[[math]] Q_{ib}=q^{i(Np_b+b)} [[/math]]


Finally, observe that [math]Q[/math] itself is a “master matrix” in our sense, because the indices split. Thus, we are led to the conclusions in the statement.

In view of the above examples, and of the lack of other known examples of master Hadamard matrices, the following conjecture was made in [1]:

\begin{conjecture}[Master Hadamard Conjecture] The master Hadamard matrices appear as Di\c t\u a deformations of [math]F_N[/math]. \end{conjecture} There is a relation here with the notions of defect and isolation, that we would like to discuss now. First, we have the following defect computation:

Theorem

The defect of a master Hadamard matrix is given by

[[math]] d(H)=\dim_\mathbb R\left\{B\in M_N(\mathbb C)\Big|\bar{B}=\frac{1}{N}BL, (BR)_{i,ij}=(BR)_{j,ij}\ \forall i,j\right\} [[/math]]
where the matrices on the right are given by

[[math]] L_{ij}=f\left(\frac{1}{\lambda_i\lambda_j}\right)\quad,\quad R_{i,jk}=f\left(\frac{\lambda_j}{\lambda_i\lambda_k}\right) [[/math]]
with [math]f[/math] being the master function.


Show Proof

The first order deformation equations from chapter 7 are as follows:

[[math]] \sum_kH_{ik}\bar{H}_{jk}(A_{ik}-A_{jk})=0 [[/math]]


In our case, with [math]H_{ij}=\lambda_i^{n_j}[/math] we have the following formula:

[[math]] H_{ij}\bar{H}_{jk}=\left(\frac{\lambda_i}{\lambda_j}\right)^{n_k} [[/math]]


Thus, the defect is given by the following formula:

[[math]] d(H)=\dim_\mathbb R\left\{A\in M_N(\mathbb R)\Big|\sum_kA_{ik}\left(\frac{\lambda_i}{\lambda_j}\right)^{n_k}=\sum_kA_{jk}\left(\frac{\lambda_i}{\lambda_j}\right)^{n_k}\ \forall i,j\right\} [[/math]]


Now, pick [math]A\in M_N(\mathbb C)[/math] and set [math]B=AH^t[/math]. We have the following formula:

[[math]] A=\frac{1}{N}B\bar{H} [[/math]]


By using this formula, we have the following computation:

[[math]] \begin{eqnarray*} A\in M_N(\mathbb R) &\iff&B\bar{H}=\bar{B}H\\ &\iff&\bar{B}=\frac{1}{N}B\bar{H}H^* \end{eqnarray*} [[/math]]


On the other hand, the matrix on the right is given by:

[[math]] (\bar{H}H^*)_{ij} =\sum_k\bar{H}_{ik}\bar{H}_{jk} =\sum_k(\lambda_i\lambda_j)^{-n_k} =L_{ij} [[/math]]


Thus [math]A\in M_N(\mathbb R)[/math] if and only the condition [math]\bar{B}=\frac{1}{N}BL[/math] in the statement is satisfied. Regarding now the second condition on [math]A[/math], observe that with [math]A=\frac{1}{N}B\bar{H}[/math] we have:

[[math]] \begin{eqnarray*} \sum_kA_{ik}\left(\frac{\lambda_i}{\lambda_j}\right)^{n_k} &=&\frac{1}{N}\sum_{ks}B_{is}\left(\frac{\lambda_i}{\lambda_j\lambda_s}\right)^{n_k}\\ &=&\frac{1}{N}\sum_sB_{is}R_{s,ij}\\ &=&\frac{1}{N}(BR)_{i,ij} \end{eqnarray*} [[/math]]


Thus the second condition on [math]A[/math] simply reads:

[[math]] (BR)_{i,ij}=(BR)_{j,ij} [[/math]]


But this leads to the conclusions in the statement.

We refer to [1] and related papers for more on the master Hadamard matrices. In what follows we will not discuss them further, but we will be back to a related topic, namely Temperley-Lieb algebra representations coming from the complex Hadamard matrices, in chapters 13-16 below, when talking about quantum permutation groups.

General references

Banica, Teo (2024). "Invitation to Hadamard matrices". arXiv:1910.06911 [math.CO].

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 J. Avan, T. Fonseca, L. Frappat, P. Kulish, E. Ragoucy and G. Rollet, Temperley-Lieb R-matrices from generalized Hadamard matrices, Theor. Math. Phys. 178 (2014), 223--240.
  2. N.H. Temperley and E.H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London 322 (1971), 251--280.