May 04'23

Exercise

The monthly profit of Company I can be modeled by a continuous random variable with density function [math]f[/math]. Company II has a monthly profit that is twice that of Company I. Let [math]g[/math] be the density function for the distribution of the monthly profit of Company II.

Determine [math]g(y)[/math] where it is not zero.

  • [math]\frac{1}{2}f(\frac{y}{2})[/math]
  • [math]f(\frac{y}{2})[/math]
  • [math]2f(\frac{y}{2})[/math]
  • [math]2f(y)[/math]
  • [math]2f(2y)[/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Oct 24'25
Step 1: Define Variables and Relationships

Let [math]X[/math] be the monthly profit of Company I, with probability density function (PDF) [math]f(x)[/math] and cumulative distribution function (CDF) [math]F(x)[/math]. Let [math]Y[/math] be the monthly profit of Company II, with PDF [math]g(y)[/math] and CDF [math]G(y)[/math]. We are given that the monthly profit of Company II is twice that of Company I. Therefore, we can express [math]Y[/math] in terms of [math]X[/math] as:

[[math]]Y = 2X[[/math]]

Step 2: Relate the Cumulative Distribution Functions (CDFs)

To find the PDF [math]g(y)[/math], we first need to determine the CDF [math]G(y)[/math]. The CDF [math]G(y)[/math] is defined as the probability that [math]Y[/math] is less than or equal to [math]y[/math]. Using the relationship [math]Y = 2X[/math], we can write:

[[math]]G(y) = P[Y \leq y][[/math]]
Substitute [math]Y = 2X[/math] into the expression:
[[math]]G(y) = P[2X \leq y][[/math]]
Divide both sides of the inequality by 2:
[[math]]G(y) = P\left[X \leq \frac{y}{2}\right][[/math]]
By definition, [math]P\left[X \leq \frac{y}{2}\right][/math] is the CDF of [math]X[/math] evaluated at [math]\frac{y}{2}[/math]:
[[math]]G(y) = F\left(\frac{y}{2}\right)[[/math]]

Step 3: Determine the Probability Density Function (PDF)

The PDF [math]g(y)[/math] is the derivative of the CDF [math]G(y)[/math] with respect to [math]y[/math]. Differentiate [math]G(y) = F\left(\frac{y}{2}\right)[/math] with respect to [math]y[/math]:

[[math]]g(y) = G'(y) = \frac{d}{dy} F\left(\frac{y}{2}\right)[[/math]]
Applying the chain rule, where the outer function is [math]F[/math] and the inner function is [math]\frac{y}{2}[/math]:
[[math]]g(y) = F'\left(\frac{y}{2}\right) \cdot \frac{d}{dy}\left(\frac{y}{2}\right)[[/math]]
We know that [math]F'(x) = f(x)[/math] and [math]\frac{d}{dy}\left(\frac{y}{2}\right) = \frac{1}{2}[/math]. Substitute these back into the equation:
[[math]]g(y) = f\left(\frac{y}{2}\right) \cdot \frac{1}{2}[[/math]]
[[math]]g(y) = \frac{1}{2}f\left(\frac{y}{2}\right)[[/math]]
This is the density function for Company II's monthly profit.

Step 4: Final Result

The density function [math]g(y)[/math] for the monthly profit of Company II is [math]\frac{1}{2}f\left(\frac{y}{2}\right)[/math].

Key Insights
  • Transformation of Random Variables: When a random variable [math]Y[/math] is a function of another random variable [math]X[/math] (e.g., [math]Y = aX + b[/math]), its PDF can be derived by first finding the CDF of [math]Y[/math] in terms of the CDF of [math]X[/math], and then differentiating the result.
  • CDF to PDF Relationship: The PDF of a continuous random variable is the derivative of its CDF. Conversely, the CDF is the integral of the PDF.
  • Chain Rule in Differentiation: The chain rule is crucial when differentiating a composite function like [math]F(y/2)[/math] to find the PDF [math]g(y)[/math]. The derivative of [math]F(h(y))[/math] is [math]F'(h(y)) \cdot h'(y)[/math].
  • Scaling Effect: If [math]Y = aX[/math], then for continuous random variables, the PDF [math]g(y) = \frac{1}{|a|} f\left(\frac{y}{a}\right)[/math]. In this problem, [math]a=2[/math], so we get [math]g(y) = \frac{1}{2} f\left(\frac{y}{2}\right)[/math]. This demonstrates how scaling the variable affects the form of its density function.
This article was generated by AI and may contain errors. If permitted, please edit the article to improve it.
00
May 04'23

Solution: A

Let X and Y be the monthly profits of Company I and Company II, respectively. We are given that the pdf of X is f . Let us also take g to be the pdf of Y and take F and G to be the distribution functions corresponding to f and g . Then

[[math]]G(y) = \operatorname{P}[Y ≤ y] = \operatorname{P}[2X ≤ y] = \operatorname{P}[X ≤ y/2] = F(y/2)[[/math]]

and

[[math]]g(y) = G^{'}(y) = d/dy F(y/2) =1/2 F^{′}(y/2) =1/2 f(y/2) .[[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00