May 01'23

Exercise

The lifetime of a machine part has a continuous distribution on the interval (0, 40) with probability density function [math]f(x)[/math], where [math]f(x)[/math] is proportional to [math](10+x)^{-2}[/math] on the interval.

Calculate the probability that the lifetime of the machine part is less than 6.

  • 0.04
  • 0.15
  • 0.47
  • 0.53
  • 0.94

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Oct 24'25
Step 1: Determine the Proportionality Constant

The lifetime of a machine part has a continuous distribution on the interval [math](0, 40)[/math]. The probability density function (PDF) is given to be proportional to [math](10+x)^{-2}[/math], so we can write it in the form:

[[math]]f(x) = C(10+x)^{-2} \quad \text{for } 0 \lt x \lt 40[[/math]]
and [math]f(x) = 0[/math] otherwise. To find the proportionality constant [math]C[/math], we use the normalization condition that the total probability over the entire support must be equal to 1:
[[math]]\int_{0}^{40} f(x) dx = 1[[/math]]
Substitute the expression for [math]f(x)[/math] and perform the integration:
[[math]]\int_{0}^{40} C(10+x)^{-2} dx = 1[[/math]]
[[math]]C \left[ -(10+x)^{-1} \right]_{0}^{40} = 1[[/math]]
[[math]]C \left[ -(10+40)^{-1} - (-(10+0)^{-1}) \right] = 1[[/math]]
[[math]]C \left[ -\frac{1}{50} + \frac{1}{10} \right] = 1[[/math]]
To simplify the expression in the brackets, find a common denominator:
[[math]]C \left[ \frac{-1 + 5}{50} \right] = 1[[/math]]
[[math]]C \left[ \frac{4}{50} \right] = 1[[/math]]
[[math]]C \frac{2}{25} = 1[[/math]]
Now, solve for [math]C[/math]:
[[math]]C = \frac{25}{2} = 12.5[[/math]]

Step 2: Calculate the Probability [math]P(X \lt 6)[/math]

With the proportionality constant [math]C = 12.5[/math], the probability density function is [math]f(x) = 12.5(10+x)^{-2}[/math]. We need to calculate the probability that the lifetime of the machine part is less than 6. This is found by integrating the PDF from 0 to 6:

[[math]]P(X \lt 6) = \int_{0}^{6} f(x) dx = \int_{0}^{6} 12.5(10+x)^{-2} dx[[/math]]
Perform the integration:
[[math]]P(X \lt 6) = 12.5 \left[ -(10+x)^{-1} \right]_{0}^{6}[[/math]]
[[math]]P(X \lt 6) = 12.5 \left[ -(10+6)^{-1} - (-(10+0)^{-1}) \right][[/math]]
[[math]]P(X \lt 6) = 12.5 \left[ -\frac{1}{16} + \frac{1}{10} \right][[/math]]
To simplify the expression in the brackets, find a common denominator (e.g., 80):
[[math]]P(X \lt 6) = 12.5 \left[ \frac{-5}{80} + \frac{8}{80} \right][[/math]]
[[math]]P(X \lt 6) = 12.5 \left[ \frac{3}{80} \right][[/math]]
Substitute [math]12.5 = \frac{25}{2}[/math]:
[[math]]P(X \lt 6) = \frac{25}{2} \times \frac{3}{80} = \frac{75}{160}[[/math]]
Simplify the fraction by dividing the numerator and denominator by 5:
[[math]]P(X \lt 6) = \frac{15}{32}[[/math]]
As a decimal, this is:
[[math]]P(X \lt 6) \approx 0.46875[[/math]]
Rounding to two decimal places, the probability is approximately [math]0.47[/math].

Key Insights
  • For any probability density function (PDF), the total probability over its entire support must integrate to 1. This normalization condition is crucial for determining proportionality constants.
  • To calculate the probability of a continuous random variable falling within a specific range, integrate its PDF over that given interval.
  • Problems involving proportionality often require an initial step to determine the exact functional form of the PDF, typically by finding a constant of proportionality.
  • Familiarity with basic integration techniques, especially for power functions, is essential for solving problems in continuous probability distributions.
This article was generated by AI and may contain errors. If permitted, please edit the article to improve it.
00
May 01'23

Solution: C

We know the density has the form [math]C (10 + x )^{-2}[/math] for [math]0 \lt x \lt 40 [/math] (equals zero otherwise). First, determine the proportionality constant [math]C[/math] from the condition [math]\int_{0}^{40} f(x) dx = 1 [/math]:

[[math]] 1 = \int_{0}^{40} C(10+x)^{-2} dx = -C(10+x)^{-1} \Big |_0^{40} = \frac{C}{10} - \frac{C}{50} = \frac{2}{25}C [[/math]]

so [math]C = 25/2 [/math], or 12.5. Then, calculate the probability over the interval (0, 6):

[[math]] 12.5 \int_0^6 (10+x)^{-2} dx = -(10 + x)^{-1} \Big |_0^6 = (\frac{1}{10} - \frac{1}{16})(12.5) = 0.47. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00