BBot
Apr 20'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
Let us call finite Hopf algebra a finite dimensional [math]C^*[/math]-algebra, with maps as follows, called comultiplication, counit and antipode,
[[math]]
\Delta:A\to A\otimes A\quad,\quad
\varepsilon:A\to\mathbb C\quad,\quad
S:A\to A^{opp}
[[/math]]
satisfying the following conditions, which are those found above,
[[math]]
(\varepsilon\otimes id)\Delta=(id\otimes\varepsilon)\Delta=id
[[/math]]
[[math]]
m(S\otimes id)\Delta=m(id\otimes S)\Delta=\varepsilon(.)1
[[/math]]
along with [math]S^2=id[/math]. Prove that if [math]G,H[/math] are finite abelian groups, dual to each other via Pontrjagin duality, then we have an identification of Hopf algebras as follows,
[[math]]
C(G)=C^*(H)
[[/math]]
and based on this, go ahead and formally write any finite Hopf algebra as
[[math]]
A=C(G)=C^*(H)
[[/math]]
and call [math]G,H[/math] finite quantum groups, dual to each other.