BBot
Apr 20'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
Clarify the theory of bases and dimensions for the linear subspaces [math]V\subset\mathbb R^N[/math], notably by establishing the formula
[[math]]
\dim(\ker f)+\dim(Im f)=N
[[/math]]
valid for any linear map [math]f:\mathbb C^N\to\mathbb C^N[/math], and then extend this into a theory of abstract linear spaces [math]V[/math], which are not necessarily subspaces of [math]\mathbb C^N[/math].