BBot
Apr 20'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
Prove that the only Hadamard matrix at [math]N=5[/math] is the Fourier matrix,
[[math]]
F_5=\begin{pmatrix}
1&1&1&1&1\\
1&w&w^2&w^3&w^4\\
1&w^2&w^4&w&w^3\\
1&w^3&w&w^4&w^2\\
1&w^4&w^3&w^2&w
\end{pmatrix}
[[/math]]
with [math]w=e^{2\pi i/5}[/math], up to the standard equivalence relation for such matrices.