BBot
Apr 20'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
Prove that the only complex Hadamard matrices at [math]N=4[/math] are, up to the standard equivalence relation, the matrices
[[math]]
F_4^q=\begin{pmatrix}
1&1&1&1\\
1&-1&1&-1\\
1&q&-1&-q\\
1&-q&-1&q
\end{pmatrix}
[[/math]]
with [math]q\in\mathbb T[/math], which appear as Di\c t\u a deformations of [math]W_4=F_2\otimes F_2[/math].