Exercise
An actuary models the lifetime of a device using the random variable [math]Y = 10X^{0.8}[/math], where [math]X[/math] is an exponential random variable with mean 1. Let [math]f(y)[/math] be the density function for [math]Y[/math].
Determine [math]f(y)[/math] for [math]y\gt0[/math].
- [math]10 y^{0.8} \exp(−8 y^{−0.2} )[/math]
- [math]8 y^{−0.2} \exp(−10 y^{0.8} )[/math]
- [math]8 y^{−0.2} \exp[−(0.1y)^{1.25} ][/math]
- [math](0.1y )^{1.25} \exp[−0.125(0.1y)^{0.25} ][/math]
- [math]0.125(0.1y )^{0.25} \exp[−(0.1y )^{1.25} ][/math]
The problem describes a random variable [math]Y[/math] derived from another random variable [math]X[/math].
- Random Variable [math]X[/math]: [math]X[/math] is an exponential random variable with a mean of 1.
- The probability density function (PDF) of [math]X[/math] is given by [math]f_X(x) = e^{-x}[/math] for [math]x \gt 0[/math].
- The cumulative distribution function (CDF) of [math]X[/math] is [math]F_X(x) = P(X \leq x) = 1 - e^{-x}[/math] for [math]x \gt 0[/math].
- Relationship between [math]Y[/math] and [math]X[/math]: The lifetime of the device [math]Y[/math] is related to [math]X[/math] by the equation [math]Y = 10X^{0.8}[/math].
- Objective: Determine the density function for [math]Y[/math], denoted as [math]f_Y(y)[/math], for [math]y \gt 0[/math]. We will use the method of transformation via the CDF.
To use the CDF method, we first need to express [math]X[/math] as a function of [math]Y[/math]. We are given:
The CDF of [math]Y[/math] is defined as [math]F_Y(y) = P(Y \leq y)[/math]. We use the relationship between [math]Y[/math] and [math]X[/math] derived in the previous step:
To find the probability density function [math]f_Y(y)[/math], we differentiate the CDF [math]F_Y(y)[/math] with respect to [math]y[/math]:
- [math]\frac{1}{8} = 0.125[/math]
- [math]\left(\frac{y}{10}\right)^{1/4} = (0.1y)^{0.25}[/math]
- [math]\left(\frac{y}{10}\right)^{5/4} = (0.1y)^{1.25}[/math]
Substituting these into the expression for [math]f_Y(y)[/math]:
- Method of Transformations (CDF Method): To find the PDF of a transformed random variable [math]Y = g(X)[/math], first find its CDF [math]F_Y(y) = P(Y \leq y)[/math] by expressing [math]X[/math] in terms of [math]Y[/math] (i.e., [math]X = g^{-1}(Y)[/math]) and using the known CDF of [math]X[/math]. Then, differentiate [math]F_Y(y)[/math] with respect to [math]y[/math] to obtain [math]f_Y(y)[/math].
- Chain Rule Application: Differentiating [math]F_Y(y) = F_X(g^{-1}(y))[/math] requires careful application of the chain rule. If [math]u = g^{-1}(y)[/math], then [math]\frac{d}{dy}F_X(u) = f_X(u) \cdot \frac{du}{dy}[/math].
- Exponential Distribution Properties: For an exponential random variable [math]X[/math] with mean [math]\lambda[/math], its CDF is [math]F_X(x) = 1 - e^{-x/\lambda}[/math]. In this problem, the mean is 1, so [math]\lambda = 1[/math], simplifying the CDF to [math]F_X(x) = 1 - e^{-x}[/math].
- Algebraic Manipulation: Proficiency in manipulating fractional exponents and simplifying expressions is crucial to arrive at the final form of the PDF, especially when matching it with multiple-choice options.
Solution: E
Therefore,