Exercise
The time, [math]T[/math], that a manufacturing system is out of operation has cumulative distribution function
The resulting cost to the company is [math]Y = T^2[/math]. Let [math]g[/math] be the density function for [math]Y[/math]. Determine [math]g(y)[/math], for [math]y \gt 4 [/math].
- [math]\frac{4}{y^2}[/math]
- [math]\frac{8}{y^{3/2}}[/math]
- [math]\frac{8}{y^3}[/math]
- [math]\frac{16}{y}[/math]
- [math]\frac{1024}{y^5}[/math]
We are provided with the cumulative distribution function (CDF) for [math]T[/math], the time a manufacturing system is out of operation:
To find the density function [math]g(y)[/math], we first need to determine the cumulative distribution function (CDF) of [math]Y[/math], which we denote as [math]G(y)[/math]. By definition, the CDF of [math]Y[/math] is:
The probability density function [math]g(y)[/math] is obtained by differentiating the cumulative distribution function [math]G(y)[/math] with respect to [math]y[/math]:
- To find the PDF of a transformed random variable [math]Y = h(T)[/math] from the CDF of [math]T[/math], the standard approach is to first find the CDF of [math]Y[/math], [math]G(y) = P(Y \leq y)[/math].
- The transformation [math]P(h(T) \leq y)[/math] is inverted to express it in terms of [math]T \leq h^{-1}(y)[/math], allowing the direct use of the original CDF [math]F(t)[/math].
- After obtaining the CDF [math]G(y)[/math], the PDF [math]g(y)[/math] is found by differentiating [math]G(y)[/math] with respect to [math]y[/math].
- It is essential to correctly determine the valid domain for [math]y[/math] based on the transformation and the original variable's domain. For [math]Y=T^2[/math], if [math]T \gt c[/math], then [math]Y \gt c^2[/math].
Solution: A
The distribution function of Y is given by
for [math] y \gt 4 [/math]. Differentiate to obtain the density function [math]g(y) = 4y^{-2}[/math].