Apr 22'25

Exercise

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Prove that the symmetry and projection with respect to the [math]Ox[/math] axis rotated by an angle [math]t/2\in\mathbb R[/math] are given by the matrices

[[math]] S_t=\begin{pmatrix}\cos t&\sin t\\ \sin t&-\cos t\end{pmatrix} [[/math]]

[[math]] P_t=\frac{1}{2}\begin{pmatrix}1+\cos t&\sin t\\ \sin t&1-\cos t\end{pmatrix} [[/math]]

and then diagonalize these matrices, and if possible without computations.