May 01'23

Exercise

Let [math]X[/math] be a continuous random variable with density function

[[math]] f(x) = \begin{cases} \frac{|x|}{10}, \, -2 \leq x \leq 4 \\ 0, \, \textrm{Otherwise.} \end{cases} [[/math]]

Calculate the expected value of [math]X[/math].

  • 1/5
  • 3/5
  • 1
  • 28/15
  • 12/5

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Oct 24'25
Step 1: Define the Expected Value Formula

The expected value [math]\operatorname{E}[X][/math] of a continuous random variable [math]X[/math] with a probability density function [math]f(x)[/math] is defined by the integral:

[[math]]\operatorname{E}[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx[[/math]]
Given the density function [math]f(x) = \frac{|x|}{10}[/math] for [math]-2 \leq x \leq 4[/math] and [math]0[/math] otherwise, the integration limits are from [math]-2[/math] to [math]4[/math]. Thus, we need to calculate:
[[math]]\operatorname{E}[X] = \int_{-2}^{4} x \cdot \frac{|x|}{10} \, dx[[/math]]

Step 2: Split the Integral Based on the Absolute Value Function

The absolute value function [math]|x|[/math] changes its definition at [math]x=0[/math]. Therefore, we must split the integral into two parts:

  • For [math]-2 \leq x \lt 0[/math], [math]|x| = -x[/math].
  • For [math]0 \leq x \leq 4[/math], [math]|x| = x[/math].

Applying this, the expected value integral becomes:

[[math]]\operatorname{E}[X] = \int_{-2}^{0} x \cdot \frac{-x}{10} \, dx + \int_{0}^{4} x \cdot \frac{x}{10} \, dx[[/math]]
This simplifies to:
[[math]]\operatorname{E}[X] = \int_{-2}^{0} \frac{-x^2}{10} \, dx + \int_{0}^{4} \frac{x^2}{10} \, dx[[/math]]

Step 3: Perform the Integration and Evaluate

We now evaluate the definite integrals. The antiderivative of [math]-x^2/10[/math] is [math]-x^3/30[/math], and the antiderivative of [math]x^2/10[/math] is [math]x^3/30[/math].

[[math]]\operatorname{E}[X] = \left[ -\frac{x^3}{30} \right]_{-2}^{0} + \left[ \frac{x^3}{30} \right]_{0}^{4}[[/math]]
[[math]] = \left( -\frac{0^3}{30} - \left(-\frac{(-2)^3}{30}\right) \right) + \left( \frac{4^3}{30} - \frac{0^3}{30} \right)[[/math]]
[[math]] = \left( 0 - \left(-\frac{-8}{30}\right) \right) + \left( \frac{64}{30} - 0 \right)[[/math]]
[[math]] = \left( -\frac{8}{30} \right) + \left( \frac{64}{30} \right)[[/math]]
[[math]] = \frac{-8 + 64}{30} = \frac{56}{30} = \frac{28}{15}[[/math]]

Key Insights
  • The expected value of a continuous random variable is found by integrating [math]x \cdot f(x)[/math] over its support.
  • When the probability density function involves an absolute value function, like [math]|x|[/math], the integral must be split into sub-intervals based on where the expression inside the absolute value changes sign (typically at [math]x=0[/math]).
  • Careful evaluation of definite integrals, especially with negative limits or terms, is essential to avoid sign errors.
This article was generated by AI and may contain errors. If permitted, please edit the article to improve it.
00
May 01'23

Solution: D

Note that

[[math]] \operatorname{E}[X] = \int_{-2}^0 \frac{-x^2}{10} dx + \int_0^4 \frac{x^2}{10} dx = \frac{-x^3}{30} \Big |_{-2}^0 + \frac{x^3}{30} \Big |_0^4 = \frac{28}{15}. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00