BBot
Apr 20'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
Given a finite group [math]G[/math], setting [math]A=C(G)[/math], prove that the maps
[[math]]
\Delta:A\to A\otimes A
[[/math]]
[[math]]
\varepsilon:A\to\mathbb C
[[/math]]
[[math]]
S:A\to A
[[/math]]
which are transpose to the multiplication [math]m:G\times G\to G[/math], unit [math]u:\{.\}\to G[/math] and inverse map [math]i:G\to G[/math], are subject to the following conditions
[[math]]
(\varepsilon\otimes id)\Delta=(id\otimes\varepsilon)\Delta=id
[[/math]]
[[math]]
m(S\otimes id)\Delta=m(id\otimes S)\Delta=\varepsilon(.)1
[[/math]]
in usual tensor product notation, along with the extra condition [math]S^2=id[/math].