May 06'23

Exercise

Losses follow an exponential distribution with mean 1. Two independent losses are observed.

Calculate the expected value of the smaller loss.

  • 0.25
  • 0.50
  • 0.75
  • 1.00
  • 1.50

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Oct 25'25
Step 1: Understand the Given Distributions

Let [math]X[/math] and [math]Y[/math] be the two independent losses observed. Each loss is given to follow an exponential distribution with a mean of 1. For an exponential distribution with mean [math]\theta[/math]:

  • The probability density function (PDF) is [math]f(x) = \frac{1}{\theta}e^{-x/\theta}[/math] for [math]x \gt 0[/math].
  • The survival function, [math]P(X \gt x)[/math], is [math]e^{-x/\theta}[/math].

Since the mean is given as 1, we have [math]\theta = 1[/math]. Therefore, the survival functions for the individual losses [math]X[/math] and [math]Y[/math] are:

[[math]]P(X \gt x) = e^{-x}[[/math]]
[[math]]P(Y \gt y) = e^{-y}[[/math]]

Step 2: Determine the Survival Function of the Smaller Loss

Let [math]Z[/math] represent the smaller of the two losses, so [math]Z = \min(X, Y)[/math]. To calculate the expected value of [math]Z[/math], we first need to identify its distribution. We can do this by finding its survival function [math]P(Z \gt z)[/math]. The event that the minimum of [math]X[/math] and [math]Y[/math] is greater than [math]z[/math] implies that both [math]X[/math] and [math]Y[/math] must be greater than [math]z[/math].

[[math]]P(Z \gt z) = P(\min(X,Y) \gt z)[[/math]]
[[math]]P(Z \gt z) = P(X \gt z \text{ and } Y \gt z)[[/math]]
Given that [math]X[/math] and [math]Y[/math] are independent losses, we can multiply their individual probabilities:
[[math]]P(Z \gt z) = P(X \gt z) \cdot P(Y \gt z)[[/math]]
Substituting the survival functions from Step 1:
[[math]]P(Z \gt z) = e^{-z} \cdot e^{-z}[[/math]]
[[math]]P(Z \gt z) = e^{-2z}[[/math]]

Step 3: Identify the Distribution of Z

The survival function of [math]Z[/math] is [math]P(Z \gt z) = e^{-2z}[/math]. This functional form is characteristic of an exponential distribution's survival function, which is generally expressed as [math]e^{-z/\theta_Z}[/math], where [math]\theta_Z[/math] is the mean of that exponential distribution. By comparing [math]e^{-2z}[/math] with [math]e^{-z/\theta_Z}[/math], we can equate the exponents:

[[math]]-2z = -\frac{z}{\theta_Z}[[/math]]
This implies:
[[math]]\frac{1}{\theta_Z} = 2[[/math]]
Solving for [math]\theta_Z[/math]:
[[math]]\theta_Z = \frac{1}{2}[[/math]]
Thus, [math]Z[/math] follows an exponential distribution with a mean parameter of [math]\frac{1}{2}[/math].

Step 4: Calculate the Expected Value of Z

For any exponential distribution, its expected value is equal to its mean parameter. Since [math]Z[/math] follows an exponential distribution with a mean of [math]\frac{1}{2}[/math]:

[[math]]E[Z] = \theta_Z = \frac{1}{2}[[/math]]
Therefore, the expected value of the smaller loss is [math]0.50[/math].

Key Insights
  • The minimum of independent exponential random variables is also an exponential random variable.
  • If [math]X_1, X_2, \dots, X_n[/math] are independent exponential random variables with respective rate parameters [math]\lambda_1, \lambda_2, \dots, \lambda_n[/math], then [math]\min(X_1, X_2, \dots, X_n)[/math] is an exponential random variable with a combined rate parameter of [math]\sum_{i=1}^n \lambda_i[/math].
  • For an exponential distribution, the mean [math]\theta[/math] and the rate parameter [math]\lambda[/math] are reciprocals: [math]\lambda = 1/\theta[/math]. In this problem, [math]X[/math] and [math]Y[/math] each have a mean of 1, implying a rate parameter of [math]\lambda_X = \lambda_Y = 1[/math]. Thus, [math]\min(X,Y)[/math] is exponential with a rate of [math]1+1=2[/math], leading to a mean of [math]1/2[/math].
  • The expected value of an exponential distribution is simply its mean parameter.
This article was generated by AI and may contain errors. If permitted, please edit the article to improve it.
00
May 06'23

Solution: B

Let X and Y be the two independent losses and Z = min(X,Y). Then,

[[math]] \operatorname{P}(Z \gt z) = \operatorname{P}(X \gt z \cap Y \gt z ) = \operatorname{P}(X \gt z ) \operatorname{P}(Y \gt z) = e^{-z}e^{-z} = e^{-2z} [[/math]]

[[math]] F_Z(z) = \operatorname{P}(Z \leq z) = 1-\operatorname{P}(Z \gt z) = 1-e^{-2z} [[/math]]

which can be recognized as an exponential distribution with mean 1/2.

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00