BBot
Apr 22'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.
Prove that the flat matrix, which is the all-one [math]N\times N[/math] matrix, diagonalizes over the complex numbers as follows,
[[math]]
\begin{pmatrix}
1&\ldots&\ldots&1\\
\vdots&&&\vdots\\
\vdots&&&\vdots\\
1&\ldots&\ldots&1\end{pmatrix}=\frac{1}{N}\,F_N
\begin{pmatrix}
N\\
&0\\
&&\ddots\\
&&&0\end{pmatrix}F_N^*
[[/math]]
where [math]F_N=(w^{ij})_{ij}[/math] with [math]w=e^{2\pi i/N}[/math] is the Fourier matrix, with the convention that the indices are taken to be [math]i,j=0,1,\ldots,N-1[/math].