Let [math]X[/math], [math]Y\sim\mathcal{N}(0,1,\mathbb{R}^d)[/math]. Show the following.
- [math]\forall\:d\geqslant1\colon\E(\|X-Y\|-\sqrt{2d})\leqslant1/\sqrt{2d}[/math].
- [math]\forall\:d\geqslant1\colon\V(\|X-Y\|)\leqslant 3[/math].
Hint: Check firstly [math]\V((X_i-Y_i)^2)=3[/math] by establishing that [math]X_i-Y_i\sim\mathcal{N}(0,2,\mathbb{R})[/math] and by using a suitable formula for computing the fourth moment. Conclude then that [math]\V(\|X-Y\|^2)\leqslant3d[/math]. Adapt finally the arguments we gave above for [math]\E(\|X\|-\sqrt{d})[/math] and [math]\V(\|X\|)[/math].
Compute in a simulation norm, distance and scalar product of points that are drawn from the hypercube [math]H_d[/math] (coordinate-wise) uniformly, i.e., [math]x=(x_1,\dots,x_d)[/math] is drawn such that [math]x_i\sim\mathcal{U}([-1,1])[/math] for [math]i=1,\dots,d[/math]. Make plots and tables similar to Figure and [[#TAB-1 |Table\,--\,]]. Compare the experimental data with our theoretical results above.
If you enjoy horror movies, then watch 2002's Hypercube.