Revision as of 22:27, 18 January 2024 by Admin (Created page with "For a select and ultimate mortality model with a one-year select period, you are given: (i) <math>\quad p_{[x]}=(1+k) p_{x}</math>, for some constant <math>k</math> (ii) <math>\quad \ddot{a}_{x: n}=21.854</math> (iii) <math>\quad \ddot{a}_{[x]: n]}=22.167</math> Calculate <math>k</math>. <ul class="mw-excansopts"><li> 0.005</li><li> 0.010</li><li> 0.015</li><li> 0.020</li><li> 0.025</li></ul> {{soacopyright|2024}}")
Jan 18'24
Exercise
For a select and ultimate mortality model with a one-year select period, you are given:
(i) [math]\quad p_{[x]}=(1+k) p_{x}[/math], for some constant [math]k[/math]
(ii) [math]\quad \ddot{a}_{x: n}=21.854[/math]
(iii) [math]\quad \ddot{a}_{[x]: n]}=22.167[/math]
Calculate [math]k[/math].
- 0.005
- 0.010
- 0.015
- 0.020
- 0.025
Jan 19'24
Answer: C
[math]\ddot{a}_{[x]: n]}=1+v p_{[x]} \ddot{a}_{x+1: n-1]}=1+(1+k)\left(v p_{x} \ddot{a}_{x+1: n-1}\right)=1+(1+k)\left(\ddot{a}_{x: n]}-1\right)[/math]
Therefore, we have
[math]k=\frac{\ddot{a}_{[x]: n]}-1}{\ddot{a}_{x: n]}-1}-1=\frac{21.167}{20.854}-1=0.015[/math]