Revision as of 22:12, 18 January 2024 by Admin (Created page with "(40) wins the SOA lottery and will receive both: *A deferred life annuity of <math>K</math> per year, payable continuously, starting at age <math>40+\stackrel{\circ}{e}_{40}</math> and *An annuity certain of <math>K</math> per year, payable continuously, for <math>\stackrel{\circ}{e}_{40}</math> years You are given: (i) <math>\mu=0.02</math> (ii) <math>\delta=0.01</math> (iii) The actuarial present value of the payments is 10,000 Calculate <math>K</math>. <ul clas...")
Jan 18'24
Exercise
(40) wins the SOA lottery and will receive both:
- A deferred life annuity of [math]K[/math] per year, payable continuously, starting at age [math]40+\stackrel{\circ}{e}_{40}[/math] and
- An annuity certain of [math]K[/math] per year, payable continuously, for [math]\stackrel{\circ}{e}_{40}[/math] years
You are given:
(i) [math]\mu=0.02[/math]
(ii) [math]\delta=0.01[/math]
(iii) The actuarial present value of the payments is 10,000
Calculate [math]K[/math].
- 214
- 216
- 218
- 220
- 222
Jan 18'24
Answer: A
[math]\stackrel{\circ}{e}_{40}=\frac{1}{\mu}=50[/math] So, receive [math]K[/math] for 50 years guaranteed and for life thereafter.
[math]10,000=K\left[\bar{a}_{\overline{50}}+{ }_{50 \mid} \bar{a}_{40}\right][/math]
[math]\bar{a}_{\overline{50}}=\int_{0}^{50} e^{-\delta t}=\frac{1-e^{-50 \delta}}{\delta}=\frac{1-e^{-50(0.01)}}{0.01}=39.35[/math]
[math]{ }_{50} \bar{a}_{40}={ }_{50} E_{40} \bar{a}_{40+50}=e^{-(\delta+\mu) 50} \frac{1}{\mu+\delta}=e^{-1.5} \frac{1}{0.03}=7.44[/math]
[math]K=\frac{10,000}{39.35+7.44}=213.7[/math]