Revision as of 22:07, 18 January 2024 by Admin (Created page with "You are given: (i) Mortality follows the Standard Ultimate Life Table (ii) Deaths are uniformly distributed over each year of age (iii) <math>\quad i=0.05</math> Calculate <math>\frac{d}{dt}(\overline{I}\overline{a})_{40:\overline{t}|}</math> at <math>t=10.5</math>. <ul class="mw-excansopts"><li> 5.8</li><li> 6.0</li><li> 6.2</li><li> 6.4</li><li> 6.6</li></ul> {{soacopyright|2024}}")
Jan 18'24
Exercise
You are given:
(i) Mortality follows the Standard Ultimate Life Table
(ii) Deaths are uniformly distributed over each year of age
(iii) [math]\quad i=0.05[/math]
Calculate [math]\frac{d}{dt}(\overline{I}\overline{a})_{40:\overline{t}|}[/math] at [math]t=10.5[/math].
- 5.8
- 6.0
- 6.2
- 6.4
- 6.6
Jan 18'24
Answer: C
[math](\bar{I} \bar{a})_{40: t}=\int_{0}^{t} s_{s} p_{40} v^{s} d s \Rightarrow \frac{d(\overline{I \bar{a}})_{40: \nexists}}{d t}=t_{t} p_{40} v^{t}[/math]
At [math]t=10.5[/math],
[math]10.5_{10.5} E_{40}=10.5_{10} p_{400.5} p_{50} v^{10.5}[/math]
[math]=10.5_{10} E_{400.5} p_{50} v^{0.5}[/math]
[math]=10.5 \times 0.60920 \times(1-0.5 \times 0.001209)(0.975900073)[/math]
[math]=6.239[/math]