Revision as of 11:36, 18 January 2024 by Admin (Created page with "'''Answer: A''' <math display="block"> \begin{aligned} \operatorname{Var}(Z) & =E\left(Z^{2}\right)-E(Z)^{2} \\ E(Z) & =E\left[(1+0.2 T)(1+0.2 T)^{-2}\right]=E\left[(1+0.2 T)^{-1}\right] \\ & =\int_{0}^{40} \frac{1}{(1+0.2 t)} f_{T}(t) d t=\frac{1}{40} \int_{0}^{40} \frac{1}{1+0.2 t} d t \\ & =\left.\frac{1}{40} \frac{1}{0.2} \ln (1+0.2 t)\right|_{0} ^{40}=\frac{1}{8} \ln (9)=0.27465 \\ E\left(Z^{2}\right) & =E\left\{(1+0.2 T)^{2}\left[(1+0.2 T)^{-2}\right]^{2}\right\}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Jan 18'24

Answer

Answer: A

[[math]] \begin{aligned} \operatorname{Var}(Z) & =E\left(Z^{2}\right)-E(Z)^{2} \\ E(Z) & =E\left[(1+0.2 T)(1+0.2 T)^{-2}\right]=E\left[(1+0.2 T)^{-1}\right] \\ & =\int_{0}^{40} \frac{1}{(1+0.2 t)} f_{T}(t) d t=\frac{1}{40} \int_{0}^{40} \frac{1}{1+0.2 t} d t \\ & =\left.\frac{1}{40} \frac{1}{0.2} \ln (1+0.2 t)\right|_{0} ^{40}=\frac{1}{8} \ln (9)=0.27465 \\ E\left(Z^{2}\right) & =E\left\{(1+0.2 T)^{2}\left[(1+0.2 T)^{-2}\right]^{2}\right\}=E\left[(1+0.2 T)^{-2}\right] \\ & =\int_{0}^{40} \frac{1}{(1+0.2 t)^{2}} f_{T}(t)=\frac{1}{40} \frac{1}{0.2}\left[\frac{-1}{(1+0.2 t)}\right]_{0}^{40} \\ & =\frac{1}{8}\left(1-\frac{1}{9}\right)=\frac{1}{9}=0.11111 \end{aligned} [[/math]]


[math]\operatorname{Var}(Z)=0.11111-(0.27465)^{2}=0.03568[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00