Revision as of 13:19, 20 November 2023 by Admin (Created page with "'''Solution: C''' The Macaulay duration of the portfolio is <math display = "block">\frac{35, 000(7.28) + 65, 000(12.74)}{35, 000 + 65, 000} = 10.829.</math> Then <math display = "block"> 105,000=100,000{\left({\frac{1.0432}{1+i}}\right)}^{1.0432}\Rightarrow{\frac{1.0432}{1+i}}=\left({\frac{105,000}{100,000}}\right)^{1.029}=1.004516\Rightarrow i=0.0385. </math> {{soacopyright | 2023 }}")
Exercise
Nov 20'23
Answer
Solution: C
The Macaulay duration of the portfolio is
[[math]]\frac{35, 000(7.28) + 65, 000(12.74)}{35, 000 + 65, 000} = 10.829.[[/math]]
Then
[[math]]
105,000=100,000{\left({\frac{1.0432}{1+i}}\right)}^{1.0432}\Rightarrow{\frac{1.0432}{1+i}}=\left({\frac{105,000}{100,000}}\right)^{1.029}=1.004516\Rightarrow i=0.0385.
[[/math]]