Revision as of 13:19, 20 November 2023 by Admin (Created page with "'''Solution: C''' The Macaulay duration of the portfolio is <math display = "block">\frac{35, 000(7.28) + 65, 000(12.74)}{35, 000 + 65, 000} = 10.829.</math> Then <math display = "block"> 105,000=100,000{\left({\frac{1.0432}{1+i}}\right)}^{1.0432}\Rightarrow{\frac{1.0432}{1+i}}=\left({\frac{105,000}{100,000}}\right)^{1.029}=1.004516\Rightarrow i=0.0385. </math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Nov 20'23

Answer

Solution: C

The Macaulay duration of the portfolio is

[[math]]\frac{35, 000(7.28) + 65, 000(12.74)}{35, 000 + 65, 000} = 10.829.[[/math]]

Then

[[math]] 105,000=100,000{\left({\frac{1.0432}{1+i}}\right)}^{1.0432}\Rightarrow{\frac{1.0432}{1+i}}=\left({\frac{105,000}{100,000}}\right)^{1.029}=1.004516\Rightarrow i=0.0385. [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00