Revision as of 13:01, 20 November 2023 by Admin (Created page with "'''Solution: E''' Modified duration = (Macaulay duration)/(1 + i) and so Macaulay duration = 8(1.064) = 8.512. <math>E_{MAC}=1\,12,955{\left({\frac{1.064}{1.07}}\right)}^{8.512}=107,676, \quad E_{MOD}=1\;12,955[1-(0.07-0.064)(8)]=107,533.</math> Then, <math>E_{M A C} - E_{MOD} = 107, 676 -107,533 = 143</math> {{soacopyright | 2023 }}")
Exercise
Nov 20'23
Answer
Solution: E
Modified duration = (Macaulay duration)/(1 + i) and so Macaulay duration = 8(1.064) = 8.512.
[math]E_{MAC}=1\,12,955{\left({\frac{1.064}{1.07}}\right)}^{8.512}=107,676, \quad E_{MOD}=1\;12,955[1-(0.07-0.064)(8)]=107,533.[/math]
Then, [math]E_{M A C} - E_{MOD} = 107, 676 -107,533 = 143[/math]