Revision as of 01:45, 1 June 2022 by Admin (Created page with "Suppose <math>F(x)</math> is a continuous cumulative probability distribution function with <math>\lim_{x\rightarrow 1}F(x)=1</math> and <math>F(x)>0</math> for all <math>x</m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jun 01'22

Exercise

Suppose [math]F(x)[/math] is a continuous cumulative probability distribution function with [math]\lim_{x\rightarrow 1}F(x)=1[/math] and [math]F(x)\gt0[/math] for all [math]x[/math]. For which of the following [math]g(x)[/math] is [math]F(g(x))[/math] also a cumulative probability distribution function?

  1. [math]x^2[/math]
  2. [math]\sqrt{|x| + 1} [/math]
  3. [math]e^{-x}[/math]
  4. [math](1 + e^{-x})^{-1}[/math]
  5. [math]1-\ln(1 + e^{-x})[/math]
Jun 01'22

Only guide subscribers can view this answer

Subscribe