Revision as of 00:34, 6 May 2023 by Admin (Created page with "'''Solution: D''' We are given that the joint pdf of X and Y is f(x,y) = 2(x+y), 0 < y < x < 1 . Now <math display = "block"> f_x(x) = \int_0^x (2x + 2y) dy = [ 2xy + y^2]_0...")
Exercise
May 06'23
Answer
Solution: D
We are given that the joint pdf of X and Y is f(x,y) = 2(x+y), 0 < y < x < 1 . Now
[[math]]
f_x(x) = \int_0^x (2x + 2y) dy = [ 2xy + y^2]_0^x = 2x^2 + x^2 = 3x^2, 0 \lt x \lt 1
[[/math]]
so
[[math]]
f(y|x) = \frac{f(x,y)}{f_x(x)} = \frac{2(x+y)}{3x^2} = \frac{2}{3}(\frac{1}{x} + \frac{y}{x^2}), 0 \lt y \lt x
[[/math]]
[[math]]
f(y|x = 0.10) = \frac{2}{3} [\frac{1}{0.1} + \frac{y}{0.1}] = \frac{2}{3}[10 + 100y], 0 \lt y \lt 0.10
[[/math]]
[[math]]
P[ Y \lt 0.05 | X = 0.10] = \int_0^{0.05} \frac{2}{3}[10 + 100y] dy = [ \frac{20}{3}y + \frac{100}{3}y^2]_0^{0.05} = \frac{1}{3} + \frac{1}{12} = \frac{5}{12} = 0.4167.
[[/math]]