Revision as of 11:07, 1 May 2023 by Admin (Created page with "'''Solution: C''' The expected payment is <math display = "block"> \begin{align*} \int_{0.6}^2 x [\frac{2.5(0.6)^{2.5}}{x^{3.5}}] \, dx + \int_2^{\infty} [\frac{2.5(0.6)^{2...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 01'23

Answer

Solution: C

The expected payment is

[[math]] \begin{align*} \int_{0.6}^2 x [\frac{2.5(0.6)^{2.5}}{x^{3.5}}] \, dx + \int_2^{\infty} [\frac{2.5(0.6)^{2.5}}{x^{3.5}}] \, dx &= 2.5(0.6)^{3.5} \left( \frac{-x^{1.5}}{1.5} \Big |_{0.6}^{2} + \frac{-x^{2.5}}{2.5} \Big |_2^{\infty} \right) \\ &= 2.5(0.6)^{2.5} \left ( \frac{-2^{-1.5}}{1.5} + \frac{0.6^{-1.5}}{1.5} + 2 \frac{2^{-2.5}}{2.5}\right ) \\ &= 0.9343. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00