Revision as of 00:41, 22 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div> {{Alert-warning|This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion. }}Given a real algebraic manifold of the free complex sphere, <math display="block"> X\subset S^{N-1}_{\mathbb C,+} </math> and an integer <math>K\in\mathbb N</math>, construct a universal <math>K\times K</math> mod...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Apr 22'25

Exercise

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Given a real algebraic manifold of the free complex sphere,

[[math]] X\subset S^{N-1}_{\mathbb C,+} [[/math]]

and an integer [math]K\in\mathbb N[/math], construct a universal [math]K\times K[/math] model for [math]C(X)[/math],

[[math]] \pi_K:C(X)\to M_K(C(T_K)) [[/math]]

with [math]T_K[/math] being the space of all [math]K\times K[/math] models for [math]C(X)[/math].