Revision as of 23:13, 21 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div> {{Alert-warning|This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion. }}Prove that the inverse of the adjacency matrix of <math>P(k)</math>, given by <math display="block"> A_k(\pi,\sigma)=\begin{cases} 1&{\rm if}\ \pi\leq\sigma\\ 0&{\rm if}\ \pi\not\leq\sigma \end{cases} </math> is t...")
BBot
Apr 22'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.
Prove that the inverse of the adjacency matrix of [math]P(k)[/math], given by
[[math]]
A_k(\pi,\sigma)=\begin{cases}
1&{\rm if}\ \pi\leq\sigma\\
0&{\rm if}\ \pi\not\leq\sigma
\end{cases}
[[/math]]
is the Möbius matrix of [math]P[/math], given by [math]M_k(\pi,\sigma)=\mu(\pi,\sigma)[/math].