Revision as of 23:12, 21 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div> {{Alert-warning|This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion. }}Prove that the Tao matrix, <math display="block"> T_6=\begin{pmatrix} 1&1&1&1&1&1\\ 1&1&w&w&w^2&w^2\\ 1&w&1&w^2&w^2&w\\ 1&w&w^2&1&w&w^2\\ 1&w^2&w^2&w&1&w\\ 1&w^2&w&w^2&w&1 \end{pmatrix} </math> with <math>w=e^...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Apr 22'25

Exercise

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Prove that the Tao matrix,

[[math]] T_6=\begin{pmatrix} 1&1&1&1&1&1\\ 1&1&w&w&w^2&w^2\\ 1&w&1&w^2&w^2&w\\ 1&w&w^2&1&w&w^2\\ 1&w^2&w^2&w&1&w\\ 1&w^2&w&w^2&w&1 \end{pmatrix} [[/math]]

with [math]w=e^{2\pi i/3}[/math], is isolated in the dephased Hadamard matrix manifold.