Revision as of 23:11, 21 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div> {{Alert-warning|This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion. }}Work out the formula of the basic circulant almost Hadamard matrix <math display="block"> L_N=\frac{1}{\sqrt{N}} \begin{pmatrix} 1&-\cos^{-1}\frac{\pi}{N}&\cos^{-1}\frac{2\pi}{N}&\ldots\ldots&\cos^{-1}\frac{(N-1)\p...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Apr 22'25

Exercise

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Work out the formula of the basic circulant almost Hadamard matrix

[[math]] L_N=\frac{1}{\sqrt{N}} \begin{pmatrix} 1&-\cos^{-1}\frac{\pi}{N}&\cos^{-1}\frac{2\pi}{N}&\ldots\ldots&\cos^{-1}\frac{(N-1)\pi}{N}\\ \cos^{-1}\frac{(N-1)\pi}{N}&1&-\cos^{-1}\frac{\pi}{N}&\ldots\ldots&-\cos^{-1}\frac{(N-2)\pi}{N}\\ \vdots&\vdots&\vdots&&\vdots\\ \vdots&\vdots&\vdots&&\vdots\\ -\cos^{-1}\frac{\pi}{N}&\cos^{-1}\frac{2\pi}{N}&-\cos^{-1}\frac{3\pi}{N}&\ldots\ldots&1 \end{pmatrix} [[/math]]

at [math]N=3,5,7,9,11[/math], and compute its [math]1[/math]-norm.