Revision as of 19:38, 21 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div> {{Alert-warning|This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion. }}Clarify all the details for the standard cube of measures <math display="block"> \xymatrix@R=16pt@C=18pt{ &\mathfrak B_t\ar@{-}[rr]\ar@{-}[dd]&&\Gamma_t\ar@{-}[dd]\\ \beta_t\ar@{-}[rr]\ar@{-}[dd]\ar@{-}[ur]&&\gamma...")
BBot
Apr 21'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.
Clarify all the details for the standard cube of measures
[[math]]
\xymatrix@R=16pt@C=18pt{
&\mathfrak B_t\ar@{-}[rr]\ar@{-}[dd]&&\Gamma_t\ar@{-}[dd]\\
\beta_t\ar@{-}[rr]\ar@{-}[dd]\ar@{-}[ur]&&\gamma_t\ar@{-}[dd]\ar@{-}[ur]\\
&B_t\ar@{-}[rr]\ar@{-}[uu]&&G_t\ar@{.}[uu]\\
b_t\ar@{-}[uu]\ar@{-}[ur]\ar@{-}[rr]&&g_t\ar@{-}[uu]\ar@{-}[ur]
}
[[/math]]
by proving that we have indeed the Bercovici-Pata bijection on the vertical.