Revision as of 00:32, 20 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div>Learn a bit about quantum groups, and about easy quantum groups, as to understand the definition of the main <math>8</math> easy quantum groups, namely <math display="block"> \xymatrix@R=20pt@C=20pt{ &K_N^+\ar[rr]&&U_N^+\\ H_N^+\ar[rr]\ar[ur]&&O_N^+\ar[ur]\\ &K_N\ar[rr]\ar[uu]&&U_N\ar[uu]\\ H_N\ar[uu]\ar[ur]\ar[rr]&&O_N\ar[uu]\ar[ur] } </math> and the Ground Zero theorem in quantum groups, stating tha...")
BBot
Apr 20'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
Learn a bit about quantum groups, and about easy quantum groups, as to understand the definition of the main [math]8[/math] easy quantum groups, namely
[[math]]
\xymatrix@R=20pt@C=20pt{
&K_N^+\ar[rr]&&U_N^+\\
H_N^+\ar[rr]\ar[ur]&&O_N^+\ar[ur]\\
&K_N\ar[rr]\ar[uu]&&U_N\ar[uu]\\
H_N\ar[uu]\ar[ur]\ar[rr]&&O_N\ar[uu]\ar[ur]
}
[[/math]]
and the Ground Zero theorem in quantum groups, stating that under suitable, strong combinatorial assumptions, these are the only [math]8[/math] quantum groups.