Revision as of 00:32, 20 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div>Given a finite group <math>H</math>, setting <math>A=C^*(H)</math>, prove that the maps <math display="block"> \Delta:A\to A\otimes A </math> <math display="block"> \varepsilon:A\to\mathbb C </math> <math display="block"> S:A\to A^{opp} </math> given by the formulae <math>\Delta(g)=g\otimes g</math>, <math>\varepsilon(g)=1</math>, <math>S(g)=g^{-1}</math> and linearity, are subject to the same cond...")
BBot
Apr 20'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
Given a finite group [math]H[/math], setting [math]A=C^*(H)[/math], prove that the maps
[[math]]
\Delta:A\to A\otimes A
[[/math]]
[[math]]
\varepsilon:A\to\mathbb C
[[/math]]
[[math]]
S:A\to A^{opp}
[[/math]]
given by the formulae [math]\Delta(g)=g\otimes g[/math], [math]\varepsilon(g)=1[/math], [math]S(g)=g^{-1}[/math] and linearity, are subject to the same conditions as above, namely
[[math]]
(\varepsilon\otimes id)\Delta=(id\otimes\varepsilon)\Delta=id
[[/math]]
[[math]]
m(S\otimes id)\Delta=m(id\otimes S)\Delta=\varepsilon(.)1
[[/math]]
in usual tensor product notation, along with the extra condition [math]S^2=id[/math].