Revision as of 00:32, 20 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div>Given a finite group <math>H</math>, setting <math>A=C^*(H)</math>, prove that the maps <math display="block"> \Delta:A\to A\otimes A </math> <math display="block"> \varepsilon:A\to\mathbb C </math> <math display="block"> S:A\to A^{opp} </math> given by the formulae <math>\Delta(g)=g\otimes g</math>, <math>\varepsilon(g)=1</math>, <math>S(g)=g^{-1}</math> and linearity, are subject to the same cond...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Apr 20'25

Exercise

[math] \newcommand{\mathds}{\mathbb}[/math]

Given a finite group [math]H[/math], setting [math]A=C^*(H)[/math], prove that the maps

[[math]] \Delta:A\to A\otimes A [[/math]]


[[math]] \varepsilon:A\to\mathbb C [[/math]]

[[math]] S:A\to A^{opp} [[/math]]

given by the formulae [math]\Delta(g)=g\otimes g[/math], [math]\varepsilon(g)=1[/math], [math]S(g)=g^{-1}[/math] and linearity, are subject to the same conditions as above, namely

[[math]] (\varepsilon\otimes id)\Delta=(id\otimes\varepsilon)\Delta=id [[/math]]

[[math]] m(S\otimes id)\Delta=m(id\otimes S)\Delta=\varepsilon(.)1 [[/math]]

in usual tensor product notation, along with the extra condition [math]S^2=id[/math].