Revision as of 00:32, 20 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div>Given a finite group <math>G</math>, setting <math>A=C(G)</math>, prove that the maps <math display="block"> \Delta:A\to A\otimes A </math> <math display="block"> \varepsilon:A\to\mathbb C </math> <math display="block"> S:A\to A </math> which are transpose to the multiplication <math>m:G\times G\to G</math>, unit <math>u:\{.\}\to G</math> and inverse map <math>i:G\to G</math>, are subject to the fol...")
BBot
Apr 20'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
Given a finite group [math]G[/math], setting [math]A=C(G)[/math], prove that the maps
[[math]]
\Delta:A\to A\otimes A
[[/math]]
[[math]]
\varepsilon:A\to\mathbb C
[[/math]]
[[math]]
S:A\to A
[[/math]]
which are transpose to the multiplication [math]m:G\times G\to G[/math], unit [math]u:\{.\}\to G[/math] and inverse map [math]i:G\to G[/math], are subject to the following conditions
[[math]]
(\varepsilon\otimes id)\Delta=(id\otimes\varepsilon)\Delta=id
[[/math]]
[[math]]
m(S\otimes id)\Delta=m(id\otimes S)\Delta=\varepsilon(.)1
[[/math]]
in usual tensor product notation, along with the extra condition [math]S^2=id[/math].