Revision as of 00:32, 20 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div>Given a finite group <math>G</math>, setting <math>A=C(G)</math>, prove that the maps <math display="block"> \Delta:A\to A\otimes A </math> <math display="block"> \varepsilon:A\to\mathbb C </math> <math display="block"> S:A\to A </math> which are transpose to the multiplication <math>m:G\times G\to G</math>, unit <math>u:\{.\}\to G</math> and inverse map <math>i:G\to G</math>, are subject to the fol...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Apr 20'25

Exercise

[math] \newcommand{\mathds}{\mathbb}[/math]

Given a finite group [math]G[/math], setting [math]A=C(G)[/math], prove that the maps

[[math]] \Delta:A\to A\otimes A [[/math]]

[[math]] \varepsilon:A\to\mathbb C [[/math]]

[[math]] S:A\to A [[/math]]

which are transpose to the multiplication [math]m:G\times G\to G[/math], unit [math]u:\{.\}\to G[/math] and inverse map [math]i:G\to G[/math], are subject to the following conditions

[[math]] (\varepsilon\otimes id)\Delta=(id\otimes\varepsilon)\Delta=id [[/math]]

[[math]] m(S\otimes id)\Delta=m(id\otimes S)\Delta=\varepsilon(.)1 [[/math]]

in usual tensor product notation, along with the extra condition [math]S^2=id[/math].