Revision as of 00:31, 20 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div>Interpret the abstract PLT formula established above, namely <math display="block"> \left(\left(1-\frac{t}{n}\right)\delta_0+\frac{t}{n}\delta_1\right)^{*n}\to p_t </math> as a Poisson Limit Theorem, with full probabilistic details.")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Apr 20'25

Exercise

[math] \newcommand{\mathds}{\mathbb}[/math]

Interpret the abstract PLT formula established above, namely

[[math]] \left(\left(1-\frac{t}{n}\right)\delta_0+\frac{t}{n}\delta_1\right)^{*n}\to p_t [[/math]]

as a Poisson Limit Theorem, with full probabilistic details.