Revision as of 00:30, 20 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div>Given an Hadamard matrix <math>H\in M_5(\mathbb T)</math>, chosen dephased, <math display="block"> H=\begin{pmatrix} 1&1&1&1&1\\ 1&a&x&*&*\\ 1&y&b&*&*\\ 1&*&*&*&*\\ 1&*&*&*&* \end{pmatrix} </math> prove that the numbers <math>a,b,x,y</math> must satisfy the following equation: <math display="block"> (x-y)(x-ab)(y-ab)=0 </math>")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Apr 20'25

Exercise

[math] \newcommand{\mathds}{\mathbb}[/math]

Given an Hadamard matrix [math]H\in M_5(\mathbb T)[/math], chosen dephased,

[[math]] H=\begin{pmatrix} 1&1&1&1&1\\ 1&a&x&*&*\\ 1&y&b&*&*\\ 1&*&*&*&*\\ 1&*&*&*&* \end{pmatrix} [[/math]]

prove that the numbers [math]a,b,x,y[/math] must satisfy the following equation:

[[math]] (x-y)(x-ab)(y-ab)=0 [[/math]]