Revision as of 00:30, 20 April 2025 by Bot (Created page with "<div class="d-none"><math> \newcommand{\mathds}{\mathbb}</math></div>Prove that any matrix can be put in Jordan form, <math display="block"> A\sim\begin{pmatrix} J_1\\ &\ddots\\ &&J_k \end{pmatrix} </math> with each of the blocks which appear, called Jordan blocks, being as follows, <math display="block"> J_i=\begin{pmatrix} \lambda_i&1\\ &\lambda_i&1\\ &&\ddots&\ddots\\ &&&\lambda_i&1\\ &&&&\lambda_i \end{pmatrix} </math> with the size being the multiplicity of <mat...")
BBot
Apr 20'25
Exercise
[math]
\newcommand{\mathds}{\mathbb}[/math]
Prove that any matrix can be put in Jordan form,
[[math]]
A\sim\begin{pmatrix}
J_1\\
&\ddots\\
&&J_k
\end{pmatrix}
[[/math]]
with each of the blocks which appear, called Jordan blocks, being as follows,
[[math]]
J_i=\begin{pmatrix}
\lambda_i&1\\
&\lambda_i&1\\
&&\ddots&\ddots\\
&&&\lambda_i&1\\
&&&&\lambda_i
\end{pmatrix}
[[/math]]
with the size being the multiplicity of [math]\lambda_i[/math].