16b. More calculus

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

In order to discuss the higher spheres, we will use spherical coordinates:

Theorem

We have spherical coordinates in [math]N[/math] dimensions,

[[math]] \begin{cases} x_1\!\!\!&=\ r\cos t_1\\ x_2\!\!\!&=\ r\sin t_1\cos t_2\\ \vdots\\ x_{N-1}\!\!\!&=\ r\sin t_1\sin t_2\ldots\sin t_{N-2}\cos t_{N-1}\\ x_N\!\!\!&=\ r\sin t_1\sin t_2\ldots\sin t_{N-2}\sin t_{N-1} \end{cases} [[/math]]
the corresponding Jacobian being given by the following formula:

[[math]] J(r,t)=r^{N-1}\sin^{N-2}t_1\sin^{N-3}t_2\,\ldots\,\sin^2t_{N-3}\sin t_{N-2} [[/math]]


Show Proof

The fact that we have spherical coordinates as above is clear. Regarding now the Jacobian, by developing the determinant over the last column, we have:

[[math]] \begin{eqnarray*} J_N &=&r\sin t_1\ldots\sin t_{N-2}\sin t_{N-1}\times \sin t_{N-1}J_{N-1}\\ &+&r\sin t_1\ldots \sin t_{N-2}\cos t_{N-1}\times\cos t_{N-1}J_{N-1}\\ &=&r\sin t_1\ldots\sin t_{N-2}(\sin^2 t_{N-1}+\cos^2 t_{N-1})J_{N-1}\\ &=&r\sin t_1\ldots\sin t_{N-2}J_{N-1} \end{eqnarray*} [[/math]]


Thus, we obtain the formula in the statement, by recurrence.

With the above results in hand, we can now compute arbitrary polynomial integrals, over the spheres of arbitrary dimension, the result being is as follows:

Theorem

The spherical integral of [math]x_{i_1}\ldots x_{i_k}[/math] vanishes, unless each index [math]a\in\{1,\ldots,N\}[/math] appears an even number of times in the sequence [math]i_1,\ldots,i_k[/math]. We have

[[math]] \int_{S^{N-1}_\mathbb R}x_{i_1}\ldots x_{i_k}\,dx=\frac{(N-1)!!l_1!!\ldots l_N!!}{(N+\Sigma l_i-1)!!} [[/math]]
with [math]l_a[/math] being this number of occurrences.


Show Proof

First, the result holds indeed at [math]N=2[/math], due to the following formula proved above, where [math]\varepsilon(p)=1[/math] when [math]p\in\mathbb N[/math] is even, and [math]\varepsilon(p)=0[/math] when [math]p[/math] is odd:

[[math]] \int_0^{\pi/2}\cos^pt\sin^qt\,dt=\left(\frac{\pi}{2}\right)^{\varepsilon(p)\varepsilon(q)}\frac{p!!q!!}{(p+q+1)!!} [[/math]]


In general, we can assume [math]l_a\in 2\mathbb N[/math], since the other integrals vanish. The integral in the statement can be written in spherical coordinates, as follows:

[[math]] I=\frac{2^N}{V}\int_0^{\pi/2}\ldots\int_0^{\pi/2}x_1^{l_1}\ldots x_N^{l_N}J\,dt_1\ldots dt_{N-1} [[/math]]


In this formula [math]V[/math] is the volume of the sphere, [math]J[/math] is the Jacobian, and the [math]2^N[/math] factor comes from the restriction to the [math]1/2^N[/math] part of the sphere where all the coordinates are positive. The normalization constant in front of the integral is:

[[math]] \frac{2^N}{V} =\frac{2^N}{N\pi^{N/2}}\cdot\Gamma\left(\frac{N}{2}+1\right) =\left(\frac{2}{\pi}\right)^{[N/2]}(N-1)!! [[/math]]


As for the unnormalized integral, this is given by:

[[math]] \begin{eqnarray*} I'=\int_0^{\pi/2}\ldots\int_0^{\pi/2} &&(\cos t_1)^{l_1} (\sin t_1\cos t_2)^{l_2}\\ &&\vdots\\ &&(\sin t_1\sin t_2\ldots\sin t_{N-2}\cos t_{N-1})^{l_{N-1}}\\ &&(\sin t_1\sin t_2\ldots\sin t_{N-2}\sin t_{N-1})^{l_N}\\ &&\sin^{N-2}t_1\sin^{N-3}t_2\ldots\sin^2t_{N-3}\sin t_{N-2}\\ &&dt_1\ldots dt_{N-1} \end{eqnarray*} [[/math]]


By rearranging the terms, we obtain:

[[math]] \begin{eqnarray*} I' &=&\int_0^{\pi/2}\cos^{l_1}t_1\sin^{l_2+\ldots+l_N+N-2}t_1\,dt_1\\ &&\int_0^{\pi/2}\cos^{l_2}t_2\sin^{l_3+\ldots+l_N+N-3}t_2\,dt_2\\ &&\vdots\\ &&\int_0^{\pi/2}\cos^{l_{N-2}}t_{N-2}\sin^{l_{N-1}+l_N+1}t_{N-2}\,dt_{N-2}\\ &&\int_0^{\pi/2}\cos^{l_{N-1}}t_{N-1}\sin^{l_N}t_{N-1}\,dt_{N-1} \end{eqnarray*} [[/math]]


Now by using the above-mentioned formula at [math]N=2[/math], this gives:

[[math]] \begin{eqnarray*} I' &=&\frac{l_1!!(l_2+\ldots+l_N+N-2)!!}{(l_1+\ldots+l_N+N-1)!!}\left(\frac{\pi}{2}\right)^{\varepsilon(N-2)}\\ &&\frac{l_2!!(l_3+\ldots+l_N+N-3)!!}{(l_2+\ldots+l_N+N-2)!!}\left(\frac{\pi}{2}\right)^{\varepsilon(N-3)}\\ &&\vdots\\ &&\frac{l_{N-2}!!(l_{N-1}+l_N+1)!!}{(l_{N-2}+l_{N-1}+l_N+2)!!}\left(\frac{\pi}{2}\right)^{\varepsilon(1)}\\ &&\frac{l_{N-1}!!l_N!!}{(l_{N-1}+l_N+1)!!}\left(\frac{\pi}{2}\right)^{\varepsilon(0)} \end{eqnarray*} [[/math]]


Now observe that the various double factorials multiply up to quantity in the statement, modulo a [math](N-1)!![/math] factor, and that the [math]\frac{\pi}{2}[/math] factors multiply up to:

[[math]] F=\left(\frac{\pi}{2}\right)^{[N/2]} [[/math]]


Thus by multiplying with the normalization constant, we obtain the result.

In connection now with our probabilistic questions, we have:

Theorem

The even moments of the hyperspherical variables are

[[math]] \int_{S^{N-1}_\mathbb R}x_i^kdx=\frac{(N-1)!!k!!}{(N+k-1)!!} [[/math]]
and the variables [math]y_i=x_i/\sqrt{N}[/math] become normal and independent with [math]N\to\infty[/math].


Show Proof

The moment formula in the statement follows from Theorem 16.3. Now observe that with [math]N\to\infty[/math] we have the following estimate:

[[math]] \begin{eqnarray*} \int_{S^{N-1}_\mathbb R}x_i^kdx &=&\frac{(N-1)!!}{(N+k-1)!!}\times k!!\\ &\simeq&N^{k/2}\times k!!\\ &=&N^{k/2}M_k(g_1) \end{eqnarray*} [[/math]]


Thus we have, as claimed, the following asymptotic formula:

[[math]] x_i/\sqrt{N}\sim g_1 [[/math]]


Finally, the independence assertion follows as well from the formula in Theorem 16.3, via some standard probability theory.

In the case of the half-classical sphere, we have the following result:

Theorem

The half-classical integral of [math]x_{i_1}\ldots x_{i_k}[/math] vanishes, unless each index [math]a[/math] appears the same number of times at odd and even positions in [math]i_1,\ldots,i_k[/math]. We have

[[math]] \int_{S^{N-1}_{\mathbb R,*}}x_{i_1}\ldots x_{i_k}\,dx=4^{\sum l_i}\frac{(2N-1)!l_1!\ldots l_n!}{(2N+\sum l_i-1)!} [[/math]]
where [math]l_a[/math] denotes this number of common occurrences.


Show Proof

As before, we can assume that [math]k[/math] is even, [math]k=2l[/math]. The corresponding integral can be viewed as an integral over [math]S^{N-1}_\mathbb C[/math], as follows:

[[math]] I=\int_{S^{N-1}_\mathbb C}z_{i_1}\bar{z}_{i_2}\ldots z_{i_{2l-1}}\bar{z}_{i_{2l}}\,dz [[/math]]


In order to get started, and prove the first assertion, let us apply to this integral transformations of the following type, with [math]|\lambda|=1[/math]:

[[math]] p\to\lambda p [[/math]]


We conclude from this that the above integral [math]I[/math] vanishes, unless each [math]z_a[/math] appears as many times as [math]\bar{z}_a[/math] does, and this gives the first assertion.


Assume now that we are in the non-vanishing case. Then the [math]l_a[/math] copies of [math]z_a[/math] and the [math]l_a[/math] copies of [math]\bar{z}_a[/math] produce by multiplication a factor [math]|z_a|^{2l_a}[/math], so we have:

[[math]] I=\int_{S^{N-1}_\mathbb C}|z_1|^{2l_1}\ldots|z_N|^{2l_N}\,dz [[/math]]


Now by using the standard identification [math]S^{N-1}_\mathbb C\simeq S^{2N-1}_\mathbb R[/math], we obtain:

[[math]] \begin{eqnarray*} I&=&\int_{S^{2N-1}_\mathbb R}(x_1^2+y_1^2)^{l_1}\ldots(x_N^2+y_N^2)^{l_N}\,d(x,y)\\ &=&\sum_{r_1\ldots r_N}\binom{l_1}{r_1}\ldots\binom{l_N}{r_N}\int_{S^{2N-1}_\mathbb R}x_1^{2l_1-2r_1}y_1^{2r_1}\ldots x_N^{2l_N-2r_N}y_N^{2r_N}\,d(x,y) \end{eqnarray*} [[/math]]


By using the formula in Theorem 16.3, we obtain:

[[math]] \begin{eqnarray*} &&I\\ &=&\sum_{r_1\ldots r_N}\binom{l_1}{r_1}\ldots\binom{l_N}{r_N}\frac{(2N-1)!!(2r_1)!!\ldots(2r_N)!!(2l_1-2r_1)!!\ldots (2l_N-2r_N)!!}{(2N+2\sum l_i-1)!!}\\ &=&\sum_{r_1\ldots r_N}\binom{l_1}{r_1}\ldots\binom{l_N}{r_N} \frac{(2N-1)!(2r_1)!\ldots (2r_N)!(2l_1-2r_1)!\ldots (2l_N-2r_N)!}{(2N+\sum l_i-1)!r_1!\ldots r_N!(l_1-r_1)!\ldots (l_N-r_N)!} \end{eqnarray*} [[/math]]


We can rewrite the sum on the right in the following way:

[[math]] \begin{eqnarray*} &&I\\ &=&\sum_{r_1\ldots r_N}\frac{l_1!\ldots l_N!(2N-1)!(2r_1)!\ldots (2r_N)!(2l_1-2r_1)!\ldots (2l_N-2r_N)!}{(2N+\sum l_i-1)!(r_1!\ldots r_N!(l_1-r_1)!\ldots (l_N-r_N)!)^2}\\ &=&\sum_{r_1}\binom{2r_1}{r_1}\binom{2l_1-2r_1}{l_1-r_1}\ldots\sum_{r_N}\binom{2r_N}{r_N}\binom{2l_N-2r_N}{l_N-r_N}\frac{(2N-1)!l_1!\ldots l_N!}{(2N+\sum l_i-1)!} \end{eqnarray*} [[/math]]


The point now is that the sums on the right can be computed, by using the following well-known formula, whose proof is elementary:

[[math]] \sum_r\binom{2r}{r}\binom{2l-2r}{l-r}=4^l [[/math]]


Thus the sums on the right in the last formula of [math]I[/math] equal respectively [math]4^{l_1},\ldots,4^{l_N}[/math], and this gives the formula in the statement.

As before, we can deduce from this a probabilistic result, as follows:

Theorem

The even moments of the half-classical hyperspherical variables are

[[math]] \int_{S^{N-1}_{\mathbb R,*}}x_i^kdx=4^k\frac{(2N-1)!k!}{(2N+k-1)!} [[/math]]
and the variables [math]y_i=x_i/(4N)[/math] become symmetrized Rayleigh with [math]N\to\infty[/math].


Show Proof

The moment formula in the statement follows from Theorem 16.5. Now observe that with [math]N\to\infty[/math] we have the following estimate:

[[math]] \begin{eqnarray*} \int_{S^{N-1}_{\mathbb R,*}}x_i^kdx &=&4^k\times\frac{(N-1)!}{(N+k-1)!}\times k!\\ &\simeq&4^k\times N^k\times k!\\ &=&(4N)^kM_k(|c|) \end{eqnarray*} [[/math]]


Here [math]c[/math] is a standard complex Gaussian variable, and this gives the result.

As a comment here, it is possible to prove, based once again on the integration formula from Theorem 16.5, that the rescaled variables [math]y_i=x_i/(4N)[/math] become “half-independent” with [math]N\to\infty[/math]. For a discussion about half-independence, we refer to [1].

General references

Banica, Teo (2024). "Affine noncommutative geometry". arXiv:2012.10973 [math.QA].

References

  1. T. Banica, S. Curran and R. Speicher, Classification results for easy quantum groups, Pacific J. Math. 247 (2010), 1--26.