16d. Fourier models

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.


In what follows we discuss the Hadamard models, which are of particular importance. Let us start with the following well-known definition:

Definition

A complex Hadamard matrix is a square matrix

[[math]] H\in M_N(\mathbb C) [[/math]]
whose entries are on the unit circle, and whose rows are pairwise orthogonal.

Observe that the orthogonality condition tells us that the rescaled matrix [math]U=H/\sqrt{N}[/math] must be unitary. Thus, these matrices form a real algebraic manifold, given by:

[[math]] X_N=M_N(\mathbb T)\cap\sqrt{N}U_N [[/math]]


The basic example is the Fourier matrix, [math]F_N=(w^{ij})[/math] with [math]w=e^{2\pi i/N}[/math]. In standard matrix form, and with indices [math]i,j=0,1,\ldots,N-1[/math], this matrix is as follows:

[[math]] F_N=\begin{pmatrix} 1&1&1&\ldots&1\\ 1&w&w^2&\ldots&w^{N-1}\\ 1&w^2&w^4&\ldots&w^{2(N-1)}\\ \vdots&\vdots&\vdots&&\vdots\\ 1&w^{N-1}&w^{2(N-1)}&\ldots&w^{(N-1)^2} \end{pmatrix} [[/math]]


More generally, we have as example the Fourier coupling of any finite abelian group [math]G[/math], regarded via the isomorphism [math]G\simeq\widehat{G}[/math] as a square matrix, [math]F_G\in M_G(\mathbb C)[/math]:

[[math]] F_G= \lt i,j \gt _{i\in G,j\in\widehat{G}} [[/math]]


Observe that for the cyclic group [math]G=\mathbb Z_N[/math] we obtain in this way the above standard Fourier matrix [math]F_N[/math]. In general, we obtain a tensor product of Fourier matrices [math]F_N[/math].


To be more precise here, we have the following result:

Theorem

Given a finite abelian group [math]G[/math], with dual group [math]\widehat{G}=\{\chi:G\to\mathbb T\}[/math], consider the Fourier coupling [math]\mathcal F_G:G\times\widehat{G}\to\mathbb T[/math], given by [math](i,\chi)\to\chi(i)[/math].

  • Via the standard isomorphism [math]G\simeq\widehat{G}[/math], this Fourier coupling can be regarded as a square matrix, [math]F_G\in M_G(\mathbb T)[/math], which is a complex Hadamard matrix.
  • In the case of the cyclic group [math]G=\mathbb Z_N[/math] we obtain in this way, via the standard identification [math]\mathbb Z_N=\{1,\ldots,N\}[/math], the Fourier matrix [math]F_N[/math].
  • In general, when using a decomposition [math]G=\mathbb Z_{N_1}\times\ldots\times\mathbb Z_{N_k}[/math], the corresponding Fourier matrix is given by [math]F_G=F_{N_1}\otimes\ldots\otimes F_{N_k}[/math].


Show Proof

This follows indeed from some basic facts from group theory:


(1) With the identification [math]G\simeq\widehat{G}[/math] made our matrix is given by [math](F_G)_{i\chi}=\chi(i)[/math], and the scalar products between the rows are computed as follows:

[[math]] \begin{eqnarray*} \lt R_i,R_j \gt &=&\sum_\chi\chi(i)\overline{\chi(j)}\\ &=&\sum_\chi\chi(i-j)\\ &=&|G|\cdot\delta_{ij} \end{eqnarray*} [[/math]]


Thus, we obtain indeed a complex Hadamard matrix.


(2) This follows from the well-known and elementary fact that, via the identifications [math]\mathbb Z_N=\widehat{\mathbb Z_N}=\{1,\ldots,N\}[/math], the Fourier coupling here is as follows, with [math]w=e^{2\pi i/N}[/math]:

[[math]] (i,j)\to w^{ij} [[/math]]


(3) We use here the following well-known formula, for the duals of products:

[[math]] \widehat{H\times K}=\widehat{H}\times\widehat{K} [[/math]]


At the level of the corresponding Fourier couplings, we obtain from this:

[[math]] F_{H\times K}=F_H\otimes F_K [[/math]]


Now by decomposing [math]G[/math] into cyclic groups, as in the statement, and by using (2) for the cyclic components, we obtain the formula in the statement.

There are many other examples of Hadamard matrices, with some being fairly exotic, appearing in various branches of mathematics and physics. The idea is that the complex Hadamard matrices can be though of as being “generalized Fourier matrices”, and this is where the interest in these matrices comes from.


In relation with the quantum groups, the starting observation is as follows:

Proposition

If [math]H\in M_N(\mathbb C)[/math] is Hadamard, the rank one projections

[[math]] P_{ij}=Proj\left(\frac{H_i}{H_j}\right) [[/math]]
where [math]H_1,\ldots,H_N\in\mathbb T^N[/math] are the rows of [math]H[/math], form a magic unitary.


Show Proof

This is clear, the verification for the rows being as follows:

[[math]] \begin{eqnarray*} \left \lt \frac{H_i}{H_j},\frac{H_i}{H_k}\right \gt &=&\sum_l\frac{H_{il}}{H_{jl}}\cdot\frac{H_{kl}}{H_{il}}\\ &=&\sum_l\frac{H_{kl}}{H_{jl}}\\ &=&N\delta_{jk} \end{eqnarray*} [[/math]]


The verification for the columns is similar, as follows:

[[math]] \begin{eqnarray*} \left \lt \frac{H_i}{H_j},\frac{H_k}{H_j}\right \gt &=&\sum_l\frac{H_{il}}{H_{jl}}\cdot\frac{H_{jl}}{H_{kl}}\\ &=&\sum_l\frac{H_{il}}{H_{kl}}\\ &=&N\delta_{ik} \end{eqnarray*} [[/math]]


Thus, we obtain the result.

We can proceed now exactly in the same way as we did with the Weyl matrices, namely by constructing a model of [math]C(S_N^+)[/math], and performing the Hopf image construction. We are led in this way to the following definition:

Definition

To any Hadamard matrix [math]H\in M_N(\mathbb C)[/math] we associate the quantum permutation group [math]G\subset S_N^+[/math] given by the fact that [math]C(G)[/math] is the Hopf image of

[[math]] \pi:C(S_N^+)\to M_N(\mathbb C)\quad,\quad u_{ij}\to Proj\left(\frac{H_i}{H_j}\right) [[/math]]
where [math]H_1,\ldots,H_N\in\mathbb T^N[/math] are the rows of [math]H[/math].

Summarizing, we have a construction [math]H\to G[/math], and our claim is that this construction is something really useful, with [math]G[/math] encoding the combinatorics of [math]H[/math]. To be more precise, our claim is that “[math]H[/math] can be thought of as being a kind of Fourier matrix for [math]G[/math]”.


There are several results supporting this claim, with the main evidence coming from the following result, which collects the basic results regarding the construction [math]H\to G[/math]:

Theorem

The construction [math]H\to G[/math] has the following properties:

  • For a Fourier matrix [math]H=F_G[/math] we obtain the group [math]G[/math] itself, acting on itself.
  • For [math]H\not\in\{F_G\}[/math], the quantum group [math]G[/math] is not classical, nor a group dual.
  • For a tensor product [math]H=H'\otimes H''[/math] we obtain a product, [math]G=G'\times G''[/math].


Show Proof

All this material is standard, and elementary, as follows:


(1) Let us first discuss the cyclic group case, where our Hadamard matrix is a usual Fourier matrix, [math]H=F_N[/math]. Here the rows of [math]H[/math] are given by [math]H_i=\rho^i[/math], where:

[[math]] \rho=(1,w,w^2,\ldots,w^{N-1}) [[/math]]


Thus, we have the following formula, for the associated magic basis:

[[math]] \frac{H_i}{H_j}=\rho^{i-j} [[/math]]


It follows that the corresponding rank 1 projections [math]P_{ij}=Proj(H_i/H_j)[/math] form a circulant matrix, all whose entries commute. Since the entries commute, the corresponding quantum group must satisfy [math]G\subset S_N[/math]. Now by taking into account the circulant property of [math]P=(P_{ij})[/math] as well, we are led to the conclusion that we have:

[[math]] G=\mathbb Z_N [[/math]]


In the general case now, where [math]H=F_G[/math], with [math]G[/math] being an arbitrary finite abelian group, the result can be proved either by extending the above proof, of by decomposing [math]G=\mathbb Z_{N_1}\times\ldots\times\mathbb Z_{N_k}[/math] and using (3) below, whose proof is independent from the rest.


(2) This is something more tricky, needing some general study of the representations whose Hopf images are commutative, or cocommutative.


(3) Assume that we have a tensor product [math]H=H'\otimes H''[/math], and let [math]G,G',G''[/math] be the associated quantum permutation groups. We have then a diagram as follows:

[[math]] \xymatrix@R=45pt@C25pt{ C(S_{N'}^+)\otimes C(S_{N''}^+)\ar[r]&C(G')\otimes C(G'')\ar[r]&M_{N'}(\mathbb C)\otimes M_{N''}(\mathbb C)\ar[d]\\ C(S_N^+)\ar[u]\ar[r]&C(G)\ar[r]&M_N(\mathbb C) } [[/math]]


Here all the maps are the canonical ones, with those on the left and on the right coming from [math]N=N'N''[/math]. At the level of standard generators, the diagram is as follows:

[[math]] \xymatrix@R=45pt@C65pt{ u_{ij}'\otimes u_{ab}''\ar[r]&w_{ij}'\otimes w_{ab}''\ar[r]&P_{ij}'\otimes P_{ab}''\ar[d]\\ u_{ia,jb}\ar[u]\ar[r]&w_{ia,jb}\ar[r]&P_{ia,jb} } [[/math]]


Now observe that this diagram commutes. We conclude that the representation associated to [math]H[/math] factorizes indeed through [math]C(G')\otimes C(G'')[/math], and this gives the result.

Going beyond the above result is an interesting question, and we refer here to [1], and follow-up papers. There are several computations available here, for the most regarding the deformations of the Fourier models. We believe that the unification of all this with the Weyl matrix models is a very good question, related to many interesting things.


And this is all. In the hope that you liked the present book, and that we will see you soon doing some research on the quantum groups. With things here being however a bit tricky, and here is some advice on this, research matters, to finish with:


(1) Generally speaking, quantum groups have been around since the late 70s, and the work by Faddeev and others [2], and so, many things are known about them. The whole area is quite advanced, and if you want to come up with some truly original, interesting new things, you need to know well mathematics and physics. No less than that.


(2) So this would be my advice, learn some mathematics and physics. And be aware that you'll have to do that alone, with your love for mathematics and physics being the only thing that you can rely upon. Of course, some things can be learned from various communities, but community basically means specialization, so wrong way.


(3) Getting to mathematics, besides Rudin [3] which is the Bible, you can learn all sorts of useful things from Arnold [4], Atiyah [5], Connes [6], Drinfeld [7], Jones [8], Voiculescu [9], von Neumann [10], Witten [11]. These are all people knowing well both mathematics and physics, and reading their writings is certainly a good idea.


(4) As for physics, for some general learning here, rather quantum mechanics oriented, you have Feynman [12], [13], [14], or Griffiths [15], [16], [17], or Weinberg [18], [19]. But, and importantly, if needed complete with some classical mechanics, say from Kibble [20], and some thermodynamics, say from Schroeder [21] or Huang [22].


Finally, in what concerns the closed subgroups [math]G\subset U_N^+[/math] from this book, as a good continuation, you can read various standard papers on easiness, such as [23], [24], [25], [26], [27], [28], [29], [30], [31], all from the 00s, and also various standard papers on quantum permutations, such as [32], [33], [1], [34], [35], [36], [37], for the most from the late 00s and early 10s. This is certainly something quite time-consuming, but with this, you can virtually read afterwards anything that you want to, on quantum groups. \begin{exercises} The matrix modelling problematics from this chapter is something quite exciting, and we have several exercises here. To start with, we have the following question:

This is something quite theoretical, the problem being that of proving that the universal model space [math]T_K[/math] in the above is indeed compact.

Here the first question is something more or less trivial, and so the exercise is about finding counterexamples at [math]K\geq2[/math], in the quantum group case.

This is something that we already discussed in the above, but with some standard functional analysis details missing. The problem is that of working out these details.

This is something quite tricky, and it is of course possible to cheat a bit here, by using product operations. The exercise asks for a high-quality counterexample.

This is something that we discussed above, but the problem now is that of doing the thing, and writing down a concise, self-contained proof for the faithfulness of [math]\pi[/math]. \begin{thebibliography}{99} \bibitem{abe}E. Abe, Hopf algebras, Cambridge Univ. Press (1980). \bibitem{agz}G.W. Anderson, A. Guionnet and O. Zeitouni, An introduction to random matrices, Cambridge Univ. Press (2010). \bibitem{arn}V.I. Arnold, Mathematical methods of classical mechanics, Springer (1974). \bibitem{ati}M.F. Atiyah, The geometry and physics of knots, Cambridge Univ. Press (1990). \bibitem{ba1}T. Banica, The free unitary compact quantum group, Comm. Math. Phys. 190 (1997), 143--172. \bibitem{ba2}T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763--780. \bibitem{ba3}T. Banica, Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224 (2005), 243--280. \bibitem{ba4}T. Banica, Liberation theory for noncommutative homogeneous spaces, Ann. Fac. Sci. Toulouse Math. 26 (2017), 127--156. \bibitem{ba5}T. Banica, Quantum groups under very strong axioms, Bull. Pol. Acad. Sci. Math. 67 (2019), 83--99. \bibitem{ba6}T. Banica, Quantum permutation groups (2022). \bibitem{ba7}T. Banica, Introduction to quantum mechanics (2022). \bibitem{bb+}T. Banica, S.T. Belinschi, M. Capitaine and B. Collins, Free Bessel laws, Canad. J. Math. 63 (2011), 3--37. \bibitem{bbd}T. Banica, J. Bhowmick and K. De Commer, Quantum isometries and group dual subgroups, Ann. Math. Blaise Pascal 19 (2012), 17--43. \bibitem{bb1}T. Banica and J. Bichon, Quantum groups acting on [math]4[/math] points, J. Reine Angew. Math. 626 (2009), 74--114. \bibitem{bb2}T. Banica and J. Bichon, Hopf images and inner faithful representations, Glasg. Math. J. 52 (2010), 677--703. \bibitem{bb3}T. Banica and J. Bichon, Random walk questions for linear quantum groups, Int. Math. Res. Not. 24 (2015), 13406--13436. \bibitem{bb4}T. Banica and J. Bichon, Matrix models for noncommutative algebraic manifolds, J. Lond. Math. Soc. 95 (2017), 519--540. \bibitem{bbc}T. Banica, J. Bichon and B. Collins, The hyperoctahedral quantum group, J. Ramanujan Math. Soc. 22 (2007), 345--384. \bibitem{bc+}T. Banica, J. Bichon, B. Collins and S. Curran, A maximality result for orthogonal quantum groups, Comm. Algebra 41 (2013), 656--665. \bibitem{bbs}T. Banica, J. Bichon and S. Curran, Quantum automorphisms of twisted group algebras and free hypergeometric laws, Proc. Amer. Math. Soc. 139 (2011), 3961--3971. \bibitem{bc1}T. Banica and B. Collins, Integration over compact quantum groups, Publ. Res. Inst. Math. Sci. 43 (2007), 277--302. \bibitem{bc2}T. Banica and B. Collins, Integration over quantum permutation groups, J. Funct. Anal. 242 (2007), 641--657. \bibitem{bc3}T. Banica and B. Collins, Integration over the Pauli quantum group, J. Geom. Phys. 58 (2008), 942--961. \bibitem{bcz}T. Banica, B. Collins and P. Zinn-Justin, Spectral analysis of the free orthogonal matrix, Int. Math. Res. Not. 17 (2009), 3286--3309. \bibitem{bcu}T. Banica and S. Curran, Decomposition results for Gram matrix determinants, J. Math. Phys. 51 (2010), 1--14. \bibitem{ez1}T. Banica, S. Curran and R. Speicher, Classification results for easy quantum groups, Pacific J. Math. 247 (2010), 1--26. \bibitem{ez2}T. Banica, S. Curran and R. Speicher, De Finetti theorems for easy quantum groups, Ann. Probab. 40 (2012), 401--435. \bibitem{bgo}T. Banica and D. Goswami, Quantum isometries and noncommutative spheres, Comm. Math. Phys. 298 (2010), 343--356. \bibitem{bne}T. Banica and I. Nechita, Flat matrix models for quantum permutation groups, Adv. Appl. Math. 83 (2017), 24--46. \bibitem{bpa}T. Banica and I. Patri, Maximal torus theory for compact quantum groups, Illinois J. Math. 61 (2017), 151--170. \bibitem{bsk}T. Banica and A. Skalski, Two-parameter families of quantum symmetry groups, J. Funct. Anal. 260 (2011), 3252--3282. \bibitem{bsp}T. Banica and R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), 1461--1501. \bibitem{bv1}T. Banica and R. Vergnioux, Fusion rules for quantum reflection groups, J. Noncommut. Geom. 3 (2009), 327--359. \bibitem{bv2}T. Banica and R. Vergnioux, Invariants of the half-liberated orthogonal group, Ann. Inst. Fourier 60 (2010), 2137--2164. \bibitem{bep}H. Bercovici and V. Pata, Stable laws and domains of attraction in free probability theory, Ann. of Math. 149 (1999), 1023--1060. \bibitem{bhg}J. Bhowmick and D. Goswami, Quantum isometry groups: examples and computations, Comm. Math. Phys. 285 (2009), 421--444. \bibitem{bi1}J. Bichon, Free wreath product by the quantum permutation group, Algebr. Represent. Theory 7 (2004), 343--362. \bibitem{bi2}J. Bichon, Algebraic quantum permutation groups, Asian-Eur. J. Math. 1 (2008), 1--13. \bibitem{bdv}J. Bichon, A. De Rijdt and S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), 703--728. \bibitem{bdu}J. Bichon and M. Dubois-Violette, Half-commutative orthogonal Hopf algebras, Pacific J. Math. 263 (2013), 13--28. \bibitem{bbl}B. Blackadar, Operator algebras: theory of C[math]^*[/math]-algebras and von Neumann algebras, Springer (2006). \bibitem{bla}E. Blanchard, Déformations de C[math]^*[/math]-algèbres de Hopf, Bull. Soc. Math. Fr. 124 (1996), 141--215. \bibitem{bcf}M. Brannan, A. Chirvasitu and A. Freslon, Topological generation and matrix models for quantum reflection groups, Adv. Math. 363 (2020), 1--26. \bibitem{bra}R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), 857--872. \bibitem{cpr}V. Chari and A. Pressley, A guide to quantum groups, Cambridge Univ. Press (1994). \bibitem{chi}A. Chirvasitu, Residually finite quantum group algebras, J. Funct. Anal. 268 (2015), 3508--3533. \bibitem{cdp}L.S. Cirio, A. D'Andrea, C. Pinzari and S. Rossi, Connected components of compact matrix quantum groups and finiteness conditions, J. Funct. Anal. 267 (2014), 3154--3204. \bibitem{csn}B. Collins and P. \'Sniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic groups, Comm. Math. Phys. 264 (2006), 773--795. \bibitem{con}A. Connes, Noncommutative geometry, Academic Press (1994). \bibitem{dpr}A. D'Andrea, C. Pinzari and S. Rossi, Polynomial growth for compact quantum groups, topological dimension and *-regularity of the Fourier algebra, Ann. Inst. Fourier 67 (2017), 2003--2027. \bibitem{dfw}B. Das, U. Franz and X. Wang, Invariant Markov semigroups on quantum homogeneous spaces, J. Noncommut. Geom. 15 (2021), 531--580. \bibitem{dgo}B. Das and D. Goswami, Quantum Brownian motion on noncommutative manifolds: construction, deformation and exit times, Comm. Math. Phys. 309 (2012), 193--228. \bibitem{dif}P. Di Francesco, Meander determinants, Comm. Math. Phys. 191 (1998), 543--583. \bibitem{dri}V.G. Drinfeld, Quantum groups, Proc. ICM Berkeley (1986), 798--820. \bibitem{fad}L. Faddeev, Instructive history of the quantum inverse scattering method, Acta Appl. Math. 39 (1995), 69--84. \bibitem{fe1}R.P. Feynman, R.B. Leighton and M. Sands, The Feynman lectures on physics I: mainly mechanics, radiation and heat, Caltech (1963). \bibitem{fe2}R.P. Feynman, R.B. Leighton and M. Sands, The Feynman lectures on physics II: mainly electromagnetism and matter, Caltech (1964). \bibitem{fe3}R.P. Feynman, R.B. Leighton and M. Sands, The Feynman lectures on physics III: quantum mechanics, Caltech (1966). \bibitem{gos}D. Goswami, Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys. 285 (2009), 141--160. \bibitem{gr1}D.J. Griffiths, Introduction to electrodynamics, Cambridge Univ. Press (2017). \bibitem{gr2}D.J. Griffiths and D.F. Schroeter, Introduction to quantum mechanics, Cambridge Univ. Press (2018). \bibitem{gr3}D.J. Griffiths, Introduction to elementary particles, Wiley (2020). \bibitem{hua}K. Huang, Introduction to statistical physics, CRC Press (2001). \bibitem{jim}M. Jimbo, A [math]q[/math]-difference analog of [math]U(\mathfrak g)[/math] and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63--69. \bibitem{jo1}V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1--25. \bibitem{jo2}V.F.R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989), 311--334. \bibitem{jo3}V.F.R. Jones, Planar algebras I (1999). \bibitem{kbe}T. Kibble and F.H. Berkshire, Classical mechanics, Imperial College Press (1966). \bibitem{lax}P. Lax, Functional analysis, Wiley (2002). \bibitem{lin}B. Lindstöm, Determinants on semilattices, Proc. Amer. Math. Soc. 20 (1969), 207--208. \bibitem{lmr}M. Lupini, L. Man\v cinska and D.E. Roberson, Nonlocal games and quantum permutation groups, J. Funct. Anal. 279 (2020), 1--39. \bibitem{maj}S. Majid, Foundations of quantum group theory, Cambridge Univ. Press (1995). \bibitem{mal}S. Malacarne, Woronowicz's Tannaka-Krein duality and free orthogonal quantum groups, Math. Scand. 122 (2018), 151--160. \bibitem{mwe}A. Mang and M. Weber, Categories of two-colored pair partitions: categories indexed by semigroups, J. Combin. Theory Ser. A 180 (2021), 1--37. \bibitem{mpa}V.A. Marchenko and L.A. Pastur, Distribution of eigenvalues in certain sets of random matrices, Mat. Sb. 72 (1967), 507--536. \bibitem{nas}J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20--63. \bibitem{nsp}A. Nica and R. Speicher, Lectures on the combinatorics of free probability, Cambridge University Press (2006). \bibitem{rau}S. Raum, Isomorphisms and fusion rules of orthogonal free quantum groups and their complexifications, Proc. Amer. Math. Soc. 140 (2012), 3207--3218. \bibitem{rwe}S. Raum and M. Weber, The full classification of orthogonal easy quantum groups, Comm. Math. Phys. 341 (2016), 751--779. \bibitem{rud}W. Rudin, Real and complex analysis, McGraw-Hill (1966). \bibitem{sch}S. Schmidt, On the quantum symmetry groups of distance-transitive graphs, Adv. Math. 368 (2020), 1--43. \bibitem{dsc}D.V. Schroeder, An introduction to thermal physics, Oxford Univ. Press. (1999). \bibitem{sto}G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274--304. \bibitem{twa}P. Tarrago and J. Wahl, Free wreath product quantum groups and standard invariants of subfactors, Adv. Math. 331 (2018), 1--57. \bibitem{twe}P. Tarrago and M. Weber, Unitary easy quantum groups: the free case and the group case, Int. Math. Res. Not. 18 (2017), 5710--5750. \bibitem{tli}N.H. Temperley and E.H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London 322 (1971), 251--280. \bibitem{vve}S. Vaes and R. Vergnioux, The boundary of universal discrete quantum groups, exactness and factoriality, Duke Math. J. 140 (2007), 35--84. \bibitem{vdn}D.V. Voiculescu, K.J. Dykema and A. Nica, Free random variables, AMS (1992). \bibitem{von}J. von Neumann, Mathematical foundations of quantum mechanics, Princeton Univ. Press (1955). \bibitem{wa1}S. Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671--692. \bibitem{wa2}S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195--211. \bibitem{wa3}S. Wang, [math]L_p[/math]-improving convolution operators on finite quantum groups, Indiana Univ. Math. J. 65 (2016), 1609--1637. \bibitem{we1}S. Weinberg, Foundations of modern physics, Cambridge Univ. Press (2011). \bibitem{we2}S. Weinberg, Lectures on quantum mechanics, Cambridge Univ. Press (2012). \bibitem{wei}D. Weingarten, Asymptotic behavior of group integrals in the limit of infinite rank, J. Math. Phys. 19 (1978), 999--1001. \bibitem{wey}H. Weyl, The classical groups: their invariants and representations, Princeton (1939). \bibitem{wig}E. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math. 62 (1955), 548--564. \bibitem{wit}E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351--399. \bibitem{wo1}S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613--665. \bibitem{wo2}S.L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 35--76. \end{thebibliography} \printindex \end{document}

General references

Banica, Teo (2024). "Introduction to quantum groups". arXiv:1909.08152 [math.CO].

References

  1. 1.0 1.1 T. Banica and J. Bichon, Random walk questions for linear quantum groups, Int. Math. Res. Not. 24 (2015), 13406--13436.
  2. L. Faddeev, Instructive history of the quantum inverse scattering method, Acta Appl. Math. 39 (1995), 69--84.
  3. W. Rudin, Real and complex analysis, McGraw-Hill (1966).
  4. V.I. Arnold, Mathematical methods of classical mechanics, Springer (1974).
  5. M.F. Atiyah, The geometry and physics of knots, Cambridge Univ. Press (1990).
  6. A. Connes, Noncommutative geometry, Academic Press (1994).
  7. V.G. Drinfeld, Quantum groups, Proc. ICM Berkeley (1986), 798--820.
  8. V.F.R. Jones, Planar algebras I (1999).
  9. D.V. Voiculescu, K.J. Dykema and A. Nica, Free random variables, AMS (1992).
  10. J. von Neumann, Mathematical foundations of quantum mechanics, Princeton Univ. Press (1955).
  11. E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351--399.
  12. R.P. Feynman, R.B. Leighton and M. Sands, The Feynman lectures on physics I: mainly mechanics, radiation and heat, Caltech (1963).
  13. R.P. Feynman, R.B. Leighton and M. Sands, The Feynman lectures on physics II: mainly electromagnetism and matter, Caltech (1964).
  14. R.P. Feynman, R.B. Leighton and M. Sands, The Feynman lectures on physics III: quantum mechanics, Caltech (1966).
  15. D.J. Griffiths, Introduction to electrodynamics, Cambridge Univ. Press (2017).
  16. D.J. Griffiths and D.F. Schroeter, Introduction to quantum mechanics, Cambridge Univ. Press (2018).
  17. D.J. Griffiths, Introduction to elementary particles, Wiley (2020).
  18. S. Weinberg, Foundations of modern physics, Cambridge Univ. Press (2011).
  19. S. Weinberg, Lectures on quantum mechanics, Cambridge Univ. Press (2012).
  20. T. Kibble and F.H. Berkshire, Classical mechanics, Imperial College Press (1966).
  21. D.V. Schroeder, An introduction to thermal physics, Oxford Univ. Press. (1999).
  22. K. Huang, Introduction to statistical physics, CRC Press (2001).
  23. T. Banica, S.T. Belinschi, M. Capitaine and B. Collins, Free Bessel laws, Canad. J. Math. 63 (2011), 3--37.
  24. T. Banica, J. Bichon and B. Collins, The hyperoctahedral quantum group, J. Ramanujan Math. Soc. 22 (2007), 345--384.
  25. T. Banica and B. Collins, Integration over compact quantum groups, Publ. Res. Inst. Math. Sci. 43 (2007), 277--302.
  26. T. Banica and B. Collins, Integration over quantum permutation groups, J. Funct. Anal. 242 (2007), 641--657.
  27. T. Banica, S. Curran and R. Speicher, Classification results for easy quantum groups, Pacific J. Math. 247 (2010), 1--26.
  28. T. Banica, S. Curran and R. Speicher, De Finetti theorems for easy quantum groups, Ann. Probab. 40 (2012), 401--435.
  29. T. Banica and R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), 1461--1501.
  30. T. Banica and R. Vergnioux, Fusion rules for quantum reflection groups, J. Noncommut. Geom. 3 (2009), 327--359.
  31. T. Banica and R. Vergnioux, Invariants of the half-liberated orthogonal group, Ann. Inst. Fourier 60 (2010), 2137--2164.
  32. T. Banica, Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224 (2005), 243--280.
  33. T. Banica and J. Bichon, Quantum groups acting on [math]4[/math] points, J. Reine Angew. Math. 626 (2009), 74--114.
  34. T. Banica, J. Bichon and S. Curran, Quantum automorphisms of twisted group algebras and free hypergeometric laws, Proc. Amer. Math. Soc. 139 (2011), 3961--3971.
  35. T. Banica and I. Nechita, Flat matrix models for quantum permutation groups, Adv. Appl. Math. 83 (2017), 24--46.
  36. M. Lupini, L. Man\v cinska and D.E. Roberson, Nonlocal games and quantum permutation groups, J. Funct. Anal. 279 (2020), 1--39.
  37. S. Schmidt, On the quantum symmetry groups of distance-transitive graphs, Adv. Math. 368 (2020), 1--43.