13b. Quantum groups

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

We will be interested in what follows in the case where the compact quantum space [math]X[/math] is a “compact quantum group”. The axioms for the corresponding [math]C^*[/math]-algebras, found by Woronowicz in [1], are, in a soft form, as follows:

Definition

A Woronowicz algebra is a [math]C^*[/math]-algebra [math]A[/math], given with a unitary matrix [math]u\in M_N(A)[/math] whose coefficients generate [math]A[/math], such that the formulae

[[math]] \Delta(u_{ij})=\sum_ku_{ik}\otimes u_{kj} [[/math]]

[[math]] \varepsilon(u_{ij})=\delta_{ij} [[/math]]

[[math]] S(u_{ij})=u_{ji}^* [[/math]]
define morphisms of [math]C^*[/math]-algebras [math]\Delta:A\to A\otimes A[/math], [math]\varepsilon:A\to\mathbb C[/math], [math]S:A\to A^{opp}[/math].

The morphisms [math]\Delta,\varepsilon,S[/math] are called comultiplication, counit and antipode. We say that [math]A[/math] is cocommutative when [math]\Sigma\Delta=\Delta[/math], where [math]\Sigma(a\otimes b)=b\otimes a[/math] is the flip. We have the following result, which justifies the terminology and axioms:

Proposition

The following are Woronowicz algebras:

  • [math]C(G)[/math], with [math]G\subset U_N[/math] compact Lie group. Here the structural maps are:
    [[math]] \begin{eqnarray*} \Delta(\varphi)&=&(g,h)\to \varphi(gh)\\ \varepsilon(\varphi)&=&\varphi(1)\\ S(\varphi)&=&g\to\varphi(g^{-1}) \end{eqnarray*} [[/math]]
  • [math]C^*(\Gamma)[/math], with [math]F_N\to\Gamma[/math] finitely generated group. Here the structural maps are:
    [[math]] \begin{eqnarray*} \Delta(g)&=&g\otimes g\\ \varepsilon(g)&=&1\\ S(g)&=&g^{-1} \end{eqnarray*} [[/math]]

Moreover, we obtain in this way all the commutative/cocommutative algebras.


Show Proof

This is something very standard, the idea being as follows:


(1) Given [math]G\subset U_N[/math], we can set [math]A=C(G)[/math], which is a Woronowicz algebra, together with the matrix [math]u=(u_{ij})[/math] formed by coordinates of [math]G[/math], given by:

[[math]] g=\begin{pmatrix} u_{11}(g)&\ldots&u_{1N}(g)\\ \vdots&&\vdots\\ u_{N1}(g)&\ldots&u_{NN}(g) \end{pmatrix} [[/math]]


Conversely, if [math](A,u)[/math] is a commutative Woronowicz algebra, by using the Gelfand theorem we can write [math]A=C(X)[/math], with [math]X[/math] being a certain compact space. The coordinates [math]u_{ij}[/math] give then an embedding [math]X\subset M_N(\mathbb C)[/math], and since the matrix [math]u=(u_{ij})[/math] is unitary we actually obtain an embedding [math]X\subset U_N[/math], and finally by using the maps [math]\Delta,\varepsilon,S[/math] we conclude that our compact subspace [math]X\subset U_N[/math] is in fact a compact Lie group, as desired.


(2) Consider a finitely generated group [math]F_N\to\Gamma[/math]. We can set [math]A=C^*(\Gamma)[/math], which is by definition the completion of the complex group algebra [math]\mathbb C[\Gamma][/math], with involution given by [math]g^*=g^{-1}[/math], for any [math]g\in\Gamma[/math], with respect to the biggest [math]C^*[/math]-norm, and we obtain a Woronowicz algebra, together with the diagonal matrix formed by the generators of [math]\Gamma[/math]:

[[math]] u=\begin{pmatrix} g_1&&0\\ &\ddots&\\ 0&&g_N \end{pmatrix} [[/math]]


Conversely, if [math](A,u)[/math] is a cocommutative Woronowicz algebra, the Peter-Weyl theory of Woronowicz, to be explained below, shows that the irreducible corepresentations of [math]A[/math] are all 1-dimensional, and form a group [math]\Gamma[/math], and so we have [math]A=C^*(\Gamma)[/math], as desired.

In relation with the above, we should mention that there are actually some analytic subtleties here, coming from amenability, and so our quantum spaces and groups must be divided by a certain equivalence relation, for everything to work fine. To be more precise, in the context of Definition 13.6, we write [math](A,u)=(B,v)[/math] when there is a [math]*[/math]-algebra isomorphism as follows, mapping standard coordinates to standard coordinates:

[[math]] \lt u_{ij} \gt \simeq \lt v_{ij} \gt \quad,\quad u_{ij}\to v_{ij} [[/math]]


In general now, the structural maps [math]\Delta,\varepsilon,S[/math] have the following properties:

Proposition

Let [math](A,u)[/math] be a Woronowicz algebra.

  • [math]\Delta,\varepsilon[/math] satisfy the usual axioms for a comultiplication and a counit, namely:
    [[math]] \begin{eqnarray*} (\Delta\otimes id)\Delta&=&(id\otimes \Delta)\Delta\\ (\varepsilon\otimes id)\Delta&=&(id\otimes\varepsilon)\Delta=id \end{eqnarray*} [[/math]]
  • [math]S[/math] satisfies the antipode axiom, on the [math]*[/math]-subalgebra generated by entries of [math]u[/math]:
    [[math]] m(S\otimes id)\Delta=m(id\otimes S)\Delta=\varepsilon(.)1 [[/math]]
  • In addition, the square of the antipode is the identity, [math]S^2=id[/math].


Show Proof

The two comultiplication axioms follow from:

[[math]] \begin{eqnarray*} (\Delta\otimes id)\Delta(u_{ij})&=&(id\otimes \Delta)\Delta(u_{ij})=\sum_{kl}u_{ik}\otimes u_{kl}\otimes u_{lj}\\ (\varepsilon\otimes id)\Delta(u_{ij})&=&(id\otimes\varepsilon)\Delta(u_{ij})=u_{ij} \end{eqnarray*} [[/math]]


As for the antipode formulae, the verification here is similar.

Summarizing, the Woronowicz algebras appear to have nice properties. In view of Proposition 13.7 and Proposition 13.8, we can formulate the following definition:

Definition

Given a Woronowicz algebra [math]A[/math], we formally write

[[math]] A=C(G)=C^*(\Gamma) [[/math]]
and call [math]G[/math] compact quantum group, and [math]\Gamma[/math] discrete quantum group.

When [math]A[/math] is both commutative and cocommutative, [math]G[/math] is a compact abelian group, [math]\Gamma[/math] is a discrete abelian group, and these groups are dual to each other, [math]G=\widehat{\Gamma},\Gamma=\widehat{G}[/math]. In general, we still agree to write, but in a formal sense:

[[math]] G=\widehat{\Gamma}\quad,\quad\Gamma=\widehat{G} [[/math]]


With this in mind, let us call now corepresentation of [math]A[/math] any unitary matrix [math]v\in M_n(A)[/math] satisfying the same conditions as those satisfied by [math]u[/math], namely:

[[math]] \Delta(v_{ij})=\sum_kv_{ik}\otimes v_{kj}\quad,\quad \varepsilon(v_{ij})=\delta_{ij}\quad,\quad S(v_{ij})=v_{ji}^* [[/math]]


These corepresentations can be thought of as corresponding representations of the underlying compact quantum group [math]G[/math]. Following Woronowicz [1], we have:

Theorem

Any Woronowicz algebra has a unique Haar integration functional,

[[math]] \left(\int_G\otimes id\right)\Delta=\left(id\otimes\int_G\right)\Delta=\int_G(.)1 [[/math]]
which can be constructed by starting with any faithful positive form [math]\varphi\in A^*[/math], and setting

[[math]] \int_G=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\varphi^{*k} [[/math]]
where [math]\phi*\psi=(\phi\otimes\psi)\Delta[/math]. Moreover, for any corepresentation [math]v\in M_n(\mathbb C)\otimes A[/math] we have

[[math]] \left(id\otimes\int_G\right)v=P [[/math]]
where [math]P[/math] is the orthogonal projection onto [math]Fix(v)=\{\xi\in\mathbb C^n|v\xi=\xi\}[/math].


Show Proof

Following [1], this can be done in 3 steps, as follows:


(1) Given [math]\varphi\in A^*[/math], our claim is that the following limit converges, for any [math]a\in A[/math]:

[[math]] \int_\varphi a=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\varphi^{*k}(a) [[/math]]


Indeed, by linearity we can assume that [math]a[/math] is the coefficient of corepresentation, [math]a=(\tau\otimes id)v[/math]. But in this case, an elementary computation shows that we have the following formula, where [math]P_\varphi[/math] is the orthogonal projection onto the [math]1[/math]-eigenspace of [math](id\otimes\varphi)v[/math]:

[[math]] \left(id\otimes\int_\varphi\right)v=P_\varphi [[/math]]


(2) Since [math]v\xi=\xi[/math] implies [math][(id\otimes\varphi)v]\xi=\xi[/math], we have [math]P_\varphi\geq P[/math], where [math]P[/math] is the orthogonal projection onto the space [math]Fix(v)=\{\xi\in\mathbb C^n|v\xi=\xi\}[/math]. The point now is that when [math]\varphi\in A^*[/math] is faithful, by using a positivity trick, one can prove that we have [math]P_\varphi=P[/math]. Thus our linear form [math]\int_\varphi[/math] is independent of [math]\varphi[/math], and is given on coefficients [math]a=(\tau\otimes id)v[/math] by:

[[math]] \left(id\otimes\int_\varphi\right)v=P [[/math]]


(3) With the above formula in hand, the left and right invariance of [math]\int_G=\int_\varphi[/math] is clear on coefficients, and so in general, and this gives all the assertions. See [1].

Consider the dense [math]*[/math]-subalgebra [math]\mathcal A\subset A[/math] generated by the coefficients of the fundamental corepresentation [math]u[/math], and endow it with the following scalar product:

[[math]] \lt a,b \gt =\int_Gab^* [[/math]]


We have then the following result, also due to Woronowicz [1]:

Theorem

We have the following Peter-Weyl type results:

  • Any corepresentation decomposes as a sum of irreducible corepresentations.
  • Each irreducible corepresentation appears inside a certain [math]u^{\otimes k}[/math].
  • [math]\mathcal A=\bigoplus_{v\in Irr(A)}M_{\dim(v)}(\mathbb C)[/math], the summands being pairwise orthogonal.
  • The characters of irreducible corepresentations form an orthonormal system.


Show Proof

All these results are from [1], the idea being as follows:


(1) Given [math]v\in M_n(A)[/math], its intertwiner algebra [math]End(v)=\{T\in M_n(\mathbb C)|Tv=vT\}[/math] is a finite dimensional [math]C^*[/math]-algebra, and so decomposes as [math]End(v)=M_{n_1}(\mathbb C)\oplus\ldots\oplus M_{n_r}(\mathbb C)[/math]. But this gives a decomposition of type [math]v=v_1+\ldots+v_r[/math], as desired.


(2) Consider indeed the Peter-Weyl corepresentations, [math]u^{\otimes k}[/math] with [math]k[/math] colored integer, defined by [math]u^{\otimes\emptyset}=1[/math], [math]u^{\otimes\circ}=u[/math], [math]u^{\otimes\bullet}=\bar{u}[/math] and multiplicativity. The coefficients of these corepresentations span the dense algebra [math]\mathcal A[/math], and by using (1), this gives the result.


(3) Here the direct sum decomposition, which is technically a [math]*[/math]-coalgebra isomorphism, follows from (2). As for the second assertion, this follows from the fact that [math](id\otimes\int_G)v[/math] is the orthogonal projection [math]P_v[/math] onto the space [math]Fix(v)[/math], for any corepresentation [math]v[/math].


(4) Let us define indeed the character of [math]v\in M_n(A)[/math] to be the matrix trace, [math]\chi_v=Tr(v)[/math]. Since this character is a coefficient of [math]v[/math], the orthogonality assertion follows from (3). As for the norm 1 claim, this follows once again from [math](id\otimes\int_G)v=P_v[/math].

Observe that in the cocommutative case, we obtain from (4) that the irreducible corepresentations must be all 1-dimensional, and so that we must have [math]A=C^*(\Gamma)[/math] for some discrete group [math]\Gamma[/math], as mentioned in Proposition 13.7.


General references

Banica, Teo (2024). "Invitation to Hadamard matrices". arXiv:1910.06911 [math.CO].

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613--665.