4d. Weingarten formula

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Our aim now is to go beyond what we have, with results regarding the truncated characters. Let us start with a general formula coming from Peter-Weyl, namely:

Theorem

The Haar integration over a closed subgroup [math]G\subset_vU_N[/math] is given on the dense subalgebra of smooth functions by the Weingarten type formula

[[math]] \int_Gg_{i_1j_1}^{e_1}\ldots g_{i_kj_k}^{e_k}\,dg=\sum_{\pi,\nu\in D(k)}\delta_\pi(i)\delta_\sigma(j)W_k(\pi,\nu) [[/math]]
valid for any colored integer [math]k=e_1\ldots e_k[/math] and any multi-indices [math]i,j[/math], where [math]D(k)[/math] is a linear basis of [math]Fix(v^{\otimes k})[/math], the associated generalized Kronecker symbols are given by

[[math]] \delta_\pi(i)= \lt \pi,e_{i_1}\otimes\ldots\otimes e_{i_k} \gt [[/math]]
and [math]W_k=G_k^{-1}[/math] is the inverse of the Gram matrix, [math]G_k(\pi,\nu)= \lt \pi,\nu \gt [/math].


Show Proof

This is something very standard, coming from the fact that the above integrals form altogether the orthogonal projection [math]P^k[/math] onto the following space:

[[math]] Fix(v^{\otimes k})=span(D(k)) [[/math]]


Consider now the following linear map, with [math]D(k)=\{\xi_k\}[/math] being as in the statement:

[[math]] E(x)=\sum_{\pi\in D(k)} \lt x,\xi_\pi \gt \xi_\pi [[/math]]


By a standard linear algebra computation, it follows that we have [math]P=WE[/math], where [math]W[/math] is the inverse of the restriction of [math]E[/math] to the following space:

[[math]] K=span\left(T_\pi\Big|\pi\in D(k)\right) [[/math]]


But this restriction is the linear map given by the matrix [math]G_k[/math], and so [math]W[/math] is the linear map given by the inverse matrix [math]W_k=G_k^{-1}[/math], and this gives the result.

In the easy case, we have the following more concrete result:

Theorem

For an easy group [math]G\subset U_N[/math], coming from a category of partitions [math]D=(D(k,l))[/math], we have the Weingarten formula

[[math]] \int_Gg_{i_1j_1}^{e_1}\ldots g_{i_kj_k}^{e_k}\,dg=\sum_{\pi,\nu\in D(k)}\delta_\pi(i)\delta_\nu(j)W_{kN}(\pi,\nu) [[/math]]
for any [math]k=e_1\ldots e_k[/math] and any [math]i,j[/math], where [math]D(k)=D(\emptyset,k)[/math], [math]\delta[/math] are usual Kronecker type symbols, checking whether the indices match, and [math]W_{kN}=G_{kN}^{-1}[/math], with

[[math]] G_{kN}(\pi,\nu)=N^{|\pi\vee\nu|} [[/math]]
where [math]|.|[/math] is the number of blocks.


Show Proof

We use the abstract Weingarten formula, from Theorem 4.40. Indeed, the Kronecker type symbols there are then the usual ones, as shown by:

[[math]] \begin{eqnarray*} \delta_{\xi_\pi}(i) &=& \lt \xi_\pi,e_{i_1}\otimes\ldots\otimes e_{i_k} \gt \\ &=&\left \lt \sum_j\delta_\pi(j_1,\ldots,j_k)e_{j_1}\otimes\ldots\otimes e_{j_k},e_{i_1}\otimes\ldots\otimes e_{i_k}\right \gt \\ &=&\delta_\pi(i_1,\ldots,i_k) \end{eqnarray*} [[/math]]


The Gram matrix being as well the correct one, we obtain the result.

Let us go back now to the general easy groups [math]G\subset U_N[/math], with the idea in mind of computing the laws of truncated characters. First, we have the following formula:

Proposition

The moments of truncated characters are given by the formula

[[math]] \int_G(g_{11}+\ldots +g_{ss})^kdg=Tr(W_{kN}G_{ks}) [[/math]]
where [math]G_{kN}[/math] and [math]W_{kN}=G_{kN}^{-1}[/math] are the associated Gram and Weingarten matrices.


Show Proof

We have indeed the following computation:

[[math]] \begin{eqnarray*} \int_G(g_{11}+\ldots +g_{ss})^kdg &=&\sum_{i_1=1}^{s}\ldots\sum_{i_k=1}^s\int_Gg_{i_1i_1}\ldots g_{i_ki_k}\,dg\\ &=&\sum_{\pi,\nu\in D(k)}W_{kN}(\pi,\nu)\sum_{i_1=1}^{s}\ldots\sum_{i_k=1}^s\delta_\pi(i)\delta_\nu(i)\\ &=&\sum_{\pi,\nu\in D(k)}W_{kN}(\pi,\nu)G_{ks}(\nu,\pi)\\ &=&Tr(W_{kN}G_{ks}) \end{eqnarray*} [[/math]]


Thus, we have reached to the formula in the statement.

In order to process now the above formula, and reach to concrete results, we must impose on our group a uniformity condition. Let us start with:

Proposition

For an easy group [math]G=(G_N)[/math], coming from a category of partitions [math]D\subset P[/math], the following conditions are equivalent:

  • [math]G_{N-1}=G_N\cap U_{N-1}[/math], via the embedding [math]U_{N-1}\subset U_N[/math] given by [math]u\to diag(u,1)[/math].
  • [math]G_{N-1}=G_N\cap U_{N-1}[/math], via the [math]N[/math] possible diagonal embeddings [math]U_{N-1}\subset U_N[/math].
  • [math]D[/math] is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that [math]G=(G_N)[/math] is uniform.


Show Proof

The equivalence [math](1)\iff(2)[/math] comes from the inclusion [math]S_N\subset G_N[/math], which makes everything [math]S_N[/math]-invariant. Regarding [math](1)\iff(3)[/math], given a subgroup [math]K\subset_vU_{N-1}[/math], consider the matrix [math]u=diag(v,1)[/math]. Our claim is that for any [math]\pi\in P(k)[/math] we have:

[[math]] \xi_\pi\in Fix(u^{\otimes k})\iff\xi_{\pi'}\in Fix(u^{\otimes k'}),\,\forall\pi'\in P(k'),\pi'\subset\pi [[/math]]


In order to prove this claim, we must study the condition on the left. We have:

[[math]] \begin{eqnarray*} \item[a]i_\pi\in Fix(v^{\otimes k}) &\iff&(u^{\otimes k}\xi_\pi)_{i_1\ldots i_k}=(\xi_\pi)_{i_1\ldots i_k},\forall i\\ &\iff&\sum_j(u^{\otimes k})_{i_1\ldots i_k,j_1\ldots j_k}(\xi_\pi)_{j_1\ldots j_k}=(\xi_\pi)_{i_1\ldots i_k},\forall i\\ &\iff&\sum_j\delta_\pi(j_1,\ldots,j_k)u_{i_1j_1}\ldots u_{i_kj_k}=\delta_\pi(i_1,\ldots,i_k),\forall i \end{eqnarray*} [[/math]]


Now let us recall that our representation has the special form [math]u=diag(v,1)[/math]. We conclude from this that for any index [math]a\in\{1,\ldots,k\}[/math], we have:

[[math]] i_a=N\implies j_a=N [[/math]]


With this observation in hand, if we denote by [math]i',j'[/math] the multi-indices obtained from [math]i,j[/math] obtained by erasing all the above [math]i_a=j_a=N[/math] values, and by [math]k'\leq k[/math] the common length of these new multi-indices, our condition becomes:

[[math]] \sum_{j'}\delta_\pi(j_1,\ldots,j_k)(u^{\otimes k'})_{i'j'}=\delta_\pi(i_1,\ldots,i_k),\forall i [[/math]]


Here the index [math]j[/math] is by definition obtained from the index [math]j'[/math] by filling with [math]N[/math] values. In order to finish now, we have two cases, depending on [math]i[/math], as follows:


\underline{Case 1}. Assume that the index set [math]\{a|i_a=N\}[/math] corresponds to a certain subpartition [math]\pi'\subset\pi[/math]. In this case, the [math]N[/math] values will not matter, and our formula becomes:

[[math]] \sum_{j'}\delta_\pi(j'_1,\ldots,j'_{k'})(u^{\otimes k'})_{i'j'}=\delta_\pi(i'_1,\ldots,i'_{k'}) [[/math]]


\underline{Case 2}. Assume now the opposite, namely that the set [math]\{a|i_a=N\}[/math] does not correspond to a subpartition [math]\pi'\subset\pi[/math]. In this case the indices mix, and our formula reads [math]0=0[/math]. Thus we have [math]\xi_{\pi'}\in Fix(u^{\otimes k'})[/math] in both cases, for any subpartition [math]\pi'\subset\pi[/math], as desired.

Now back to the laws of truncated characters, we have the following result:

Theorem

For a uniform easy group [math]G=(G_N)[/math], we have the formula

[[math]] \lim_{N\to\infty}\int_{G_N}\chi_t^k=\sum_{\pi\in D(k)}t^{|\pi|} [[/math]]
with [math]D\subset P[/math] being the associated category of partitions.


Show Proof

We use Proposition 4.42. With [math]s=[tN][/math], the formula there becomes:

[[math]] \int_{G_N}\chi_t^k=Tr(W_{kN}G_{k[tN]}) [[/math]]


The point now is that in the uniform case the Gram matrix, and so the Weingarten matrix too, is asymptotically diagonal. Thus, we obtain the following estimate:

[[math]] \begin{eqnarray*} \int_{G_N}\chi_t^k &\simeq&\sum_{\pi\in D(k)}W_{kN}(\pi,\pi)G_{k[tN]}(\pi,\pi)\\ &\simeq&\sum_{\pi\in D(k)}N^{-|\pi|}(tN)^{|\pi|}\\ &=&\sum_{\pi\in D(k)}t^{|\pi|} \end{eqnarray*} [[/math]]


Thus, we are led to the formula in the statement.

We can now enlarge our collection of truncated character results, and we have:

Theorem

With [math]N\to\infty[/math], the laws of truncated characters are as follows:

  • For [math]O_N[/math] we obtain the Gaussian law [math]g_t[/math].
  • For [math]U_N[/math] we obtain the complex Gaussian law [math]G_t[/math].
  • For [math]S_N[/math] we obtain the Poisson law [math]p_t[/math].
  • For [math]H_N[/math] we obtain the Bessel law [math]b_t[/math].
  • For [math]H_N^s[/math] we obtain the generalized Bessel law [math]b_t^s[/math].
  • For [math]K_N[/math] we obtain the complex Bessel law [math]B_t[/math].


Show Proof

We already know these results at [math]t=1[/math]. In the general case, [math]t \gt 0[/math], these follow via some standard combinatorics, from the formula in Theorem 4.44.

General references

Banica, Teo (2024). "Calculus and applications". arXiv:2401.00911 [math.CO].

References