exercise:Cb32047610: Difference between revisions
From Stochiki
(Created page with "Individuals purchase both collision and liability insurance on their automobiles. The value of the insured’s automobile is ''V''. Assume the loss ''L'' on an automobile clai...") |
mNo edit summary |
||
Line 2: | Line 2: | ||
<math display = "block"> | <math display = "block"> | ||
F(l) = \begin{cases} | |||
\frac{3}{4}\left(\frac{l}{V}\right)^3, \, 0 ≤ l < V \\ | \frac{3}{4}\left(\frac{l}{V}\right)^3, \, 0 ≤ l < V \\ | ||
1-\frac{1}{10}e^{\frac{-(l-V)}{V}}, \, \textrm{otherwise} | 1-\frac{1}{10}e^{\frac{-(l-V)}{V}}, \, \textrm{otherwise} |
Latest revision as of 21:20, 8 May 2023
Individuals purchase both collision and liability insurance on their automobiles. The value of the insured’s automobile is V. Assume the loss L on an automobile claim is a random variable with cumulative distribution function
[[math]]
F(l) = \begin{cases}
\frac{3}{4}\left(\frac{l}{V}\right)^3, \, 0 ≤ l \lt V \\
1-\frac{1}{10}e^{\frac{-(l-V)}{V}}, \, \textrm{otherwise}
\end{cases}
[[/math]]
Calculate the probability that the loss on a randomly selected claim is greater than the value of the automobile.
- 0.00
- 0.10
- 0.25
- 0.75
- 0.90